Control and Pulsewidth-measurement of Laser Accelerated Electron Beams

Japan Atomic Energy Agency (JAEA)

Hideyuki Kotaki, Yukio Hayashi, Keigo Kawase, Michiaki Mori, Masaki Kando, Takayuki Homma, James K. Koga, and Sergei V. Bulanov

The 1st International Particle Accelerator Conference  Kyoto, Japan / May 23-28, 2010
1. Introduction
   Study of laser acceleration at JAEA
   Laser Acceleration
   Purpose of the study
2. Experimental setup
3. Experimental results
   Direction control
   Profile control
   Observation of electron oscillation
4. Summary
Intense laser in JAEA

X-ray Laser Room (C104)  Entrance  Laser Acceleration room (C101)

J-LITE X (C113)

J-KAREN (C103)
### Electron acceleration
- M. Mori, THPEC003, *Stabilization of Laser Accelerated Electron Bunch by the Ionization-stage Control*

### Ion acceleration and applications
- M. Nishiuchi, MOPEA013, *Laser-driven Proton Accelerator for Medical Application*
- A. Yogo, MOPEA014, *DNA Double-Strand Break Induction in A549 Cells with a Single-Bunch Beam of Laser-Accelerated Protons*
- H. Sakaki, MOPEA015, *Dose Calculation for Laser-driven Ion Accelerator*
- A. Sagisaka, THPD039, *Proton Generation Driven by a High Intensity Laser Using a Thin-foil Target*

### Microtron
- Y. Hayashi, MOPEA058, *Measurement of the Parametric X-rays with the Rocking Curve Method*

### Simulation
- T. Nakamura, MOPEA059, *Laser Acceleration of Negative Ions by Coulomb Implosion Mechanism*
- T. Nakamura, TUPE027, *Target Ionization Dynamics by Irradiation of X-ray Free-electron Laser Light*
Laser Acceleration

1. Focused intense laser pulse produces a laser-plasma.
2. The laser pulse generates a plasma wake.
3. Electrons are accelerated by the plasma wake.

Electron Beam Generated by Laser Acceleration
- Low emittance
- Short pulse duration
- High energy (compact)

Application
- Electron beam source for next generation accelerators.
- Femto-second pulse radiolysis
- Measurement of ultra-fast phenomena

High-quality electron beam generation

Quasi-monoenergetic Electron Beam Generation by one laser pulse


Unstable generation
Purpose of the study

**Purpose**
Use the laser-accelerated electron beam for application (Measurement of ultrafast phenomena etc.)

- **Improvement of the electron beam**
  - 1. High-Z gas-target
    - M. Mori, et al., PRST 12, 082801 (2009)
  - Optical injection

- **Control of the electron beam**
  - 2. Direction control
  - 3. Profile control

- **Characterization of the electron beam**
  - 4. Pulse width measurement

THPEC003
Setup for JLITE-X experiment

- **Gas jet:** Smart shell LX-03R
- **Nozzle:** Laval nozzle
- **Density length:** ~3500 um
- **Gas material:** Nitrogen

**Electromagnet**

**Pump laser (from JLITE-X)**

- **Energy:** $E = 160 \pm 4.8 \text{ mJ}$
- **Pulse duration:** $\tau = 40 \text{ fs (4TW)}$
- **Wavelength:** $\lambda = 800 \text{ nm}$
- **ASE pedestal:** $1 \times 10^{-6}$ for $500 \text{ ps} > t > 1 \text{ ps}$
- **ASE pedestal:** $2 \times 10^{-8}$ for $t > 500 \text{ ps}$

**Laser intensity:** $9 \times 10^{17} \text{ W/cm}^2$

**f/22 OAP**

- $(f=646 \text{ mm})$

**Gas jet:** Smart shell LX-03R

**Nozzle:** Laval nozzle

**Density length:** ~3500 um

**Gas material:** Nitrogen
Laser accelerated electron beam

Energy distribution

Neutral gas density: \( \sim 4 \times 10^{18} \text{ cm}^{-3} \)

We improved the stability of the electron beam divergence, pointing, and peak energy.
Initial direction control of the electron beam

Top view of the setup of the measurement of the electron beam direction
Initial direction control of the electron beam

Direction control of the laser accelerated electron beam

We can control the initial direction of the laser accelerated electron beam by changing the gas-jet position.
Profile control of the electron beam

Profiles of the laser accelerated electron beam

In order to manipulate the electron beam profile, we increase the plasma density. The plasma frequency is given by

$$\omega_p = \sqrt{4\pi n_e e^2 / m_e}.$$

We can manipulate the profile of the laser accelerated electron beam by rotating the laser polarization.

Similar result has been published in S. P. D. Mangles, et al., PRL 96, 215001 (2006)
Energy spectrum of laser-accelerated electron beams

**S polarization**

1.9×10^{19} \text{ cm}^{-3}  
(before dephasing)

2.0×10^{19} \text{ cm}^{-3}  
(optimum)

2.2×10^{19} \text{ cm}^{-3}  
(after dephasing)

2.4×10^{19} \text{ cm}^{-3}  
(after dephasing)

**P polarization**
N$_2$ 0.34MPa

**P polarization**

$n_e = 2.2 \times 10^{19}$ cm$^{-3}$

**S polarization**

The peak energy is 20 MeV

The oscillation depends on the laser polarization.
The pulsewidth (FWHM) of the electron beam is 1.5 period.
The oscillation is caused by the laser field or the plasma wave.
Electron oscillation for low plasma density

The oscillation is caused by the plasma wave

An angle of the oscillation is

$$\theta(\gamma) = -\frac{\theta_0}{\pi} \frac{(\gamma_0 \beta_0)^{1/4}}{(\gamma \beta)^{3/4}} \sin \left[ \frac{E_0}{E_z} \left( \sqrt{2 \gamma \beta} - \sqrt{2 \gamma_0 \beta_0} \right) \right],$$

$$\theta_0 = \pi \omega_p r_0/(2c),$$

$$\gamma_0 = \omega_0 / (\sqrt{3} \omega_p) = 4.86.$$

Y. Glinec, et al., Europhys. Lett. 81, 64001 (2008), etc.

From the equation, the amplitude is increased with $\omega_p$.

Good agreement with the experimental data.
Electron oscillation for low plasma density

The oscillation is caused by the plasma wave

An angle of the oscillation is

\[ \theta(\gamma) = -\frac{\theta_0}{\pi} \left( \frac{\gamma_0 \beta_0}{\gamma \beta} \right)^{1/4} \sin \left[ \frac{E_0}{E_z} \left( \sqrt{2\gamma \beta} - \sqrt{2\gamma_0 \beta_0} \right) \right], \]

\[ \theta_0 = \pi \omega_p r_0 / (2c), \]

\[ \gamma_0 = \omega_0 / (\sqrt{3} \omega_p) = 4.86. \]

From the equation, the amplitude is increased with \( \omega_p \)

Good agreement with the experimental data

Y. Glinec, et al., Europhys. Lett. 81, 64001 (2008), etc.
Assuming that the oscillation is caused by the plasma wave

1. The angle of the electron oscillation is

\[
\theta(\gamma) = -\frac{\theta_0 (\gamma_0 \beta_0)^{1/4}}{\pi} \sin \left[ \frac{E_0}{E_z} \left( \sqrt{2\gamma \beta} - \sqrt{2\gamma_0 \beta_0} \right) \right].
\]

The amplitude should be about 2mrad (contradiction).

2. When the laser pulse has P-polarization, we should be observed 2mrad of oscillation. However, we could not observe oscillation (contradiction).
Assuming that the oscillation is caused by the plasma wave

3. The electron oscillation frequency by the plasma wave is

\[ \omega_\beta = \frac{\omega_p}{\sqrt{2\gamma_0\beta_0}}. \]

From this equation, the wavelength is \( \lambda_\beta = 20.8 \, [\mu\text{m}] \).

The oscillation has 1.5 periods. The electron pulsewidth, \( \tau_{e_\beta} \), is

\[ \tau_{e_\beta} = 20.8[\mu\text{m}] \times 1.5/c = 31.2[\mu\text{m}]/c, \]

\[ = 104 \, [\text{fs}]. \]

The electron bunch length is 4.6 times longer than the plasma wavelength. When the electron bunch length is longer than the plasma wavelength, it is difficult to observe the oscillation in energy space.

There are contradictions.
Assuming that the oscillation is caused by the laser field

1. “oscillation frequency” = “laser frequency”
   The electron beam has 1.5 oscillation.
   The pulsewidth of the electron beam is
   \[ t_{e_L} = 0.8[\mu m] \times 1.5/c = 1.2[\mu m]/c, \]
   \[ = 4 \text{ [fs]} \].
   From the plasma density, the plasma wavelength is
   \[ \lambda_p = 6.73[\mu m] \].
   The electron bunch length is **18%** of the plasma wavelength.

   It is possible to observe the electron oscillation in energy space.
Assuming that the oscillation is caused by the laser field

2. The angle of the oscillation is
\[ \theta_{\text{las}} = \frac{a_0}{\gamma} = 16 \text{ mrad} \]

3. When the laser pulse has P-polarization, it is difficult to observe the oscillation by the plasma wave due to the big oscillation by the laser field.

If the electron oscillation is caused by the laser field, there is no contradict.
The electron oscillation is in the polarization plane with period the wavelength of the driver laser.

It was carried out using the VORPAL.

The figure is copied from
Summary

1. We have succeeded in generating a stable laser-accelerated electron beam.

2. The electron beam direction was controlled by changing the gas-jet position.

3. The profile of the electron beam was manipulated by rotating the laser polarization.

4. 2 types of electron oscillation were observed in energy space.

5. From the oscillation, we thought that the pulsewidth of the electron beam was 4 fs.