Extracting Information Content within Noisy, Sampled Profile Data from Charged Particle Beams*

Christopher K. Allen
Willem Blokland
Sarah Cousineau
John Galambos

HB2008 Workshop
Nashville Tennessee

*This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
Outline

• Profile Data

• The Problem

• Model of Measurement Random Process

• Computations of Beam Position μ and Size σ

• Conclusions

• Open Questions
Profile Data
1D Projections of the Beam Distribution

Say \(f(x,y) \) is the transverse beam distribution.

The projection, or profile, of \(f \) in the horizontal plane is

\[
fx(x) = \int_{-L/2}^{+L/2} f(x,y) \, dy.
\]

When measuring the projection \(f_x \) is sampled at axis locations

\[x_k = kh \]

with constant sampling intervals \(h \), and \(N \) samples.

Thus, the sampled profile is given as the discrete set

\[
\{f_{x,k}\} = \{f_x(x_1), f_x(x_2), \ldots, f_x(x_N)\}
\]

We drop the subscript \(x \) from here out
Profile Data
Objectives: What Do We Want?

At this point, we only want two quantities from the measured data

- Beam Position μ
- Beam Size σ

This seemed like a reasonable expectation, however…

- The data are noisy
- Beam jitter
- Missing data points
- Many data sets
The Problem
Processing many data sets for Simple Parameters

Original Goal: Estimate Twiss parameters

Within SNS CCL:
- First compute beam sizes
 - 5 wire scanners with 3 wires
 - 15 data sets of ~150 samples each
- Most effort is manual data processing
 - Looking for bad data sets
 - Removing errant data points
 - Clipping noise baseline
 - Reject bad fits, Etc.
- We just want 10 numbers!

Can computation of the beam position and size from profile data be automated?
Beam Properties and Measurement Model

Computing Beam Position μ and Size σ

- If we know the sampled profile f_k exactly, normalizing by the step length h the position μ and size σ are approximated*

$$
\mu = \frac{1}{S} \sum_{k=1}^{N} k f_k, \quad \sigma = \left(\frac{1}{S} \sum_{k=1}^{N} (k - \mu)^2 f_k \right)^{1/2}, \quad \text{where} \quad S = \sum_{k=1}^{N} f_k
$$

- However, we do not know the $\{f_k\}$.

The Measurement Model

- Each measurement m_k contains noise from electronics, jitter, etc.
- Model as Gaussian white-noise process W with mean B and variance $V**$

$$
m_k = f_k + W_k \quad \text{measurement random process}
$$

- We must account for this noise when approximating μ and σ.

* That is, μ and σ are in units of step length h – not necessarily integers

**The noise can be characterized by a calibration experiment (w/o beam)
Measurement Random Process

- Gaussian noise process p.d.f. is \(P(W = w) = \frac{1}{\sqrt{2\pi V}} e^{-\frac{(w-B)^2}{2V^2}} \)

 - Then probability that measurement process \(M_k \) has value \(m_k \) is the same as the probability that noise process \(W \) has value \(m_k - f_k \)

 \[
P(M_k = m_k) = \frac{1}{\sqrt{2\pi V}} e^{-\frac{(m_k-f_k-B)^2}{2V^2}}
 \]

 - Assuming independent events, probability (p.d.f.) of the data set \(\{m_k\} \) is

 \[
P(\{M_k\} = \{m_k\}) = \frac{1}{(2\pi)^{N/2} V^N} e^{-\frac{1}{2V^2} \sum_{k=1}^{N} (m_k-f_k-B)^2}
 \]

This is the p.d.f. of our measurement random process
Technique #1
Direct Computation with Measurement Data

- Inspecting \(P(\{m_k\}) \), the sample set \(\{f_k\} \) that maximizes the probability of obtaining measurement set \(\{m_k\} \) is \(f_k = m_k - B \) for all \(k \)
 - Compute position \(\mu \) and size \(\sigma \) directly from measurement data \(\{m_k - B\} \)
 - However, \(\{m_k\} \) is a sampling from a random process, we must characterize statistical properties of computations involving these samples…

Defining computations*

\[
S_n(\bar{k}) \equiv \sum_{k=1}^{N} (k - \bar{k})^n f_k
\]

\[
\tilde{S}_n(\bar{k}) \equiv \sum_{k=1}^{N} (k - \bar{k})^n (m_k - B)
\]

*Recall \(\mu = S_1(0)/S_0(0) \)
 and \(\sigma^2 = S_2(\mu)/S_0(0) \)

We get

\[
\text{Mean}[\tilde{S}_n(\bar{k})] = S_n(\bar{k})
\]

\[
\text{Var}[\tilde{S}_n(\bar{k})] = N_n(\bar{k})V
\]

where \(N_n(\bar{k}) \equiv \sum_{k=1}^{N} (k - \bar{k})^n \)
Approximate μ and σ with measured

$$\mu \approx \tilde{S}_1(0) / \tilde{S}_0(0)$$

$$\sigma^2 \approx \tilde{S}_2(\mu) / \tilde{S}_0(0)$$

which are the expected values

- If W is ergodic these approximations get better as $N \to \infty$

The variances in these values are dominated by $N_1(0)V$ and $N_2(\mu)V$

- N_n is exponentially increasing as $N \to \infty$
- N_n is huge for typical measurements

Although the expected values are exactly μ and σ, the variances become enormous as $N \to \infty$.

- $V < \sigma \times 10^{-7}$ for $\sim 10\%$ accuracy

Is there any way around this??
Technique #2
Assuming a Known Profile for f_k

- **Assume** a profile for $f(x)$ which is parameterized by μ and σ
 - Apply Bayesian techniques to estimate parameters μ and σ

- **Example**: Take f as a **Gaussian** – must add amplitude parameter A

\[
f(x; A, \mu, \sigma) = Ae^{-\frac{(x-h\mu)^2}{2(h\sigma)^2}} \quad \text{then} \quad f_k(A, \mu, \sigma) = Ae^{-\frac{(k-\mu)^2}{2\sigma^2}}
\]

- We want to know (A, μ, σ) given $\{m_k\}$ - Bayes says that

\[
P(A, \mu, \sigma \mid \{m_k\}, B, V) \propto P(\{m_k\} \mid A, \mu, \sigma, B, V)P(A, \mu, \sigma)
\]

- Look for $A, \mu, \text{and } \sigma$ that maximize $P(\{m_k\} \mid A, \mu, \sigma, B, V)P(A, \mu, \sigma)$
 - We know $P(\{m_k\} \mid A, \mu, \sigma, B, V)$
 - The prior distribution $P(A, \mu, \sigma) = P(A, \sigma)P(\mu)$ can be shown to be uniform because A and σ are related by $A\sigma \propto Q$, the beam charge
 - The result is a χ-squared maximization of $P(\{m_k\} \mid A, \mu, \sigma, B, V)$

We can also eliminate the need for noise characterization by including B as a parameter
Gaussian RMS Fit
Gaussian-Like Profile

- **Measurement**
 - \(N = 80 \) sample points
 - Noise floor \(B \approx 0.00369 \)
 - \(A \approx \max \{m_k\} - B = 0.180 \)

- **Gaussian Fit**
 - \(A = 0.164 \)
 - \(\mu = 69.2 \)
 - \(\sigma = 1.99 \)
 - \(B = 0.00478 \)

- **Computed**
 - \(A = 0.0834 \)
 - \(\mu = 69.0 \)
 - \(\sigma = 4.33 \)
 - \(B = 0.00369 \)
Gaussian RMS Fit
Profile with Halo

- **Measurement**
 - $N = 50$ sample points
 - Noise floor $B \sim 0.00387$
 - $A \sim \max \{m_k\} - B = 0.260$

- **Gaussian Fit**
 - $A = 0.236$
 - $\mu = 35.9$
 - $\sigma = 1.81$
 - $B = 0.00874$

- **Computed**
 - $A = 0.245$
 - $\mu = 35.3$
 - $\sigma = 2.14$
 - $B = 0.00387$
Gaussian RMS Fit
Extremely Noisy Profile

- **Measurement**
 - $N = 90$ sample points
 - Noise floor $B \sim 0.00107$
 - $A \sim \max \{m_k\} - B = 0.149$

- **Gaussian Fit**
 - $A = 0.112$
 - $\mu = 50.3$
 - $\sigma = 2.26$
 - $B = 0.00181$

- **Computed**
 -
Conclusions

- **Direct Computation of \(\mu \) and \(\sigma \) from Measurements**
 - Highly sensitive to noise and thus dubious
 - Requires calibration measurement (twice as long)

- **Gaussian Fits**
 - Direct RMS data fit is the most probable from Bayesian standpoint
 - Work well without halo
 - Good noise rejection
 - Seems to prefer core of the beam
 - Include noise baseline as parameter to avoid calibration (faster)

- **Data Smoothing (not covered)**
 - Significant loss of original signal

- **Data Sampling (not covered)**
 - Spectral power loss \(\propto \exp[-\sigma^2/h] \)
 - An \(h \) providing > 3 samples per \(\sigma \) gives good signal reconstruction
 - An \(h \) with < 1.5 samples per \(\sigma \) gives poor signal reconstruction
The Crux

• A primary motivation for determining μ and σ is **halo mitigation**
 – A primary cause of **halo formation** is **poor matching** between accelerating structures
 – We originally wanted μ and σ to compute Twiss parameters in order to re-adjustment quadrupole strengths for a good match (automated matching?)
 – Gaussian fits are suspect when halo is present

• Gaussian Fitting: You need a good match in order to match
Open Questions

Without Visual Inspection (That is, Automatically…)

• How do we recognize corrupted data?
 – Reject it if we find it?

• How do we recognize halo?
 – If we can recognize halo how do we compute μ and σ?

• Is there a better assumed profile than Gaussian?
 – Maxwell-Boltzmann is known to be stationary but no analytic form exists

• More fundamentally – is it possible to automate matching?
 – If so, how?
Thank You!

Any ideas, suggestions, comments welcome!
Sampling Intervals
Resolving Information Content

Choosing number of samples per scan (in order to maintain information content)

- Assume Gaussian profile
- Fourier transform of Gaussian with std = σ is Gaussian with std = $1/\sigma$
- Nyquist says when sampling at interval of h the highest frequency is $1/2h$.

$\Rightarrow \sigma/h > 3$ is reasonable
$\Rightarrow \sigma/h < 1.5$ is dubious
Sampling Interval
“Perfect*” (D/A) Reconstruction from Samples

\[\sigma/h = 1.5, \; N = 50 \]

\[\sigma/h = 2.5, \; N = 50 \]

*via Shannon sampling theorem
Gaussian χ-Squared Fit

- Significant shoulders
 - Gaussian fit does not accurately represent the signal
 - Beam size (sigma) is too small

χ^2 minimization
- $f(x)$ is a Gaussian at location \bar{x} with standard deviation σ
- $\{m_k\}$ are measurements
- $\{x_k\}$ are measurement locations

$$\sigma = \arg \min_{\bar{x}, \sigma, B} \chi^2(\bar{x}, \sigma, B) = \sum_{k=1}^{N} [m_k - f(x_k; \bar{x}, \sigma, B)]^2$$

![Fit Results Table]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma</td>
<td>1.516</td>
<td>0.065</td>
</tr>
<tr>
<td>Amp.</td>
<td>0.158</td>
<td>0.006</td>
</tr>
<tr>
<td>Center</td>
<td>75.307</td>
<td>0.065</td>
</tr>
<tr>
<td>Offset</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Direct RMS Size Calculation

- Highly sensitive to background noise
 - Direct RMS calculation does not accurately produce beam size
 - Beam size is too large

Standard Deviation of Measured Data
- h step length
- \bar{k} is (discrete) mean value
- $\{m_k\}$ are measurements
- $\{x_k\}$ are measurement locations

\[
\left\langle x^2 \right\rangle^{1/2} = \left[\frac{1}{L} \sum_{k=1}^{N} x_k^2 m_k \right]^{1/2} = \left[\frac{h}{N} \sum_{k=1}^{N} (k - \bar{k})^2 m_k \right]
\]

Fit Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma</td>
<td>4.154</td>
<td>0.000</td>
</tr>
<tr>
<td>Amp.</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Center</td>
<td>74.748</td>
<td>0.000</td>
</tr>
<tr>
<td>Offset</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Noise amplifying term
Observations
What I Have Seen So Far

Gaussian Fit*

<table>
<thead>
<tr>
<th></th>
<th>Noise unknown</th>
<th>Noise charact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Halo</td>
<td>Bad</td>
<td>Bad</td>
</tr>
<tr>
<td>Noisy data</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Jittery data</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>

Statistical Calculation

<table>
<thead>
<tr>
<th></th>
<th>Noise unknown</th>
<th>Noise charact.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>Bad</td>
<td>Good</td>
</tr>
<tr>
<td>Halo</td>
<td>Bad</td>
<td>Good</td>
</tr>
<tr>
<td>Noisy data</td>
<td>Bad</td>
<td>marginal</td>
</tr>
<tr>
<td>Jittery data</td>
<td>Bad</td>
<td>Bad</td>
</tr>
</tbody>
</table>

• Additional Bayesian analysis (i.e., most probable) gives marginal return
• Critical to know the noise offset for direct statistical calculation

*RMS, or most likely, fits
Computations Involving Profile Data

- Beam Position
- Beam Size
- Twiss Parameters
Measurement Model

- Measurement process
 - Each measurement m_k is taken during one macro-pulse
 - A stepper motor advances the profile device step length h after which the next measurement is made
 - We assume the beam is reproducible, that is, each beam pulse is identical to the previous.
 - Gaussian white noise process with mean M and variance V.
Profile Data Processing and Data Analysis

We wish to infer beam properties from collected profile data.

However – can think of profile data as 3-view, 1-dimension tomography

⇒ Data contain limited amount of information

⇒ Profile data have noise, jitter, missing data points, etc.

We want to recover...

• Beam Position μ
• Beam Size σ

This is a reasonable expectation.

The difficulty arises because we have so many data, and it’s noisy ….
Measurement Model

- Each sample contains noise from
 - Electronics
 - Jitter, etc.

- If the jitter is minimal, then it is reasonable to model the noise as a Gaussian white noise process W with mean B and variance V^*.
 - Each measurement m_k will be composed of the (actual) sampled projection f_k and a noise component W_k

 $$m_k = f_k + W_k$$

- The white noise assumption implies
 - $W_k = W$ for all k (i.e., the noise is position independent)

* The noise can be characterized by a calibration experiment (no beam)
**This assumes that the beam is pulse reproducible
Centroid Location (Beam Position)

• Let μ be the beam centroid position (i.e., beam position)

$$
\mu \equiv \frac{\int_{-b/2}^{+b/2} xf(x) dx}{\int_{-b/2}^{+b/2} f(x) dx} \approx h \frac{S_1(N)}{S_0(N)}
$$

where the S_n are the sampled summations

$$
S_n(N) \equiv \sum_{k=1}^{N} k^n f_k
$$
Expected Beta (Beam Size)

- Let σ be the beam size

$$\sigma^2 \equiv \frac{\int_{-b/2}^{+b/2} x^2 f(x) \, dx}{\int_{-b/2}^{+b/2} f(x) \, dx} - \left[\frac{\int_{-b/2}^{+b/2} x f(x) \, dx}{\int_{-b/2}^{+b/2} f(x) \, dx} \right]^2 \approx h^2 \frac{S_2(N)}{S_0(N)} + h^2 \left[\frac{S_1(N)}{S_0(N)} \right]^2$$

- Once again we include the noise process and from our measurements $\{m_k\}$ compute

$$\widetilde{\sigma}(N) = h^2 \frac{\widetilde{S}_2(N)}{\widetilde{S}_0(N)} - h^2 \left[\frac{\widetilde{S}_1(N)}{\widetilde{S}_0(N)} \right]^2 \quad \text{where} \quad \widetilde{S}_n(N) = \sum_{k=1}^{N} k^2 m_k$$
The Problem – Halo
What is the Beam Size?

Determining beam size can be a very subjective process

Direct calculation using $\{m_k\}$

Direct calculation with manual processing

Labor Intensive!

Gaussian fit result

1.516
The Problem - Jittery Data

- How to compute beam size
 - Do we trust a Gaussian fit?
 - Data smoothing?
- Reject measurement altogether?
 - How to automatically identify bad data

Fit Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigma</td>
<td>2.291</td>
<td>0.245</td>
</tr>
<tr>
<td>Amp.</td>
<td>0.112</td>
<td>0.008</td>
</tr>
<tr>
<td>Center</td>
<td>94.401</td>
<td>0.245</td>
</tr>
<tr>
<td>Offset</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>