LCLS Drive Laser Shaping Experiments

A. Brachmann, R. Coffee, D. Reis, D. Dowell
And the LCLS Physics Team
SLAC National Accelerator Lab

FEL09 Conference
Liverpool, England
August 2009

• Description of the LCLS Injector and the Experiment
• Experimental Results
• Heuristic Model of the Emittance Growth
• Summary & Conclusions
The LCLS Injector with Diagnostics

Nominal Operating Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch Charge</td>
<td>250 pC</td>
</tr>
<tr>
<td>Projected Emittance (x-plane)</td>
<td>0.44 microns (rms)</td>
</tr>
<tr>
<td>Projected Emittance (y-plane)</td>
<td>0.46 microns (rms)</td>
</tr>
<tr>
<td>Slice Emittance (x-plane)</td>
<td>0.39 microns (rms)</td>
</tr>
<tr>
<td>Bunch Length</td>
<td>697.6 microns (rms)</td>
</tr>
<tr>
<td>Gain Length</td>
<td>3.7 meters</td>
</tr>
<tr>
<td>Electron Energy Loss</td>
<td>6.4 MeV</td>
</tr>
</tbody>
</table>
The Seven Laser Shapes

Nominal 1.2 mm dia.

180 mesh
32 cycles per 1.2 mm
38 micron line spacing

50 mesh
9 cycles per 1.2 mm dia.
133 micron line spacing

Gaussian
Bagel
Donut
Airy Diffraction

Measure for Each Shape:
Projected & Slice Emittance
Gain Length
FEL Extraction
Summary of Experimental Results

Projected Emittance at 135 MeV

Gain Length (m) at FEL wavelength 1.5 Å

Energy Loss (MeV) of e-Beam After Lasing

Red lines indicate the nominal values
The emittances were measured at 250 pC and 135 MeV. The FEL gain lengths are for lasing at 1.5 Angstroms with an electron beam energy of 13.63 GeV.
A Simple Model for the Emittance Growth

Basic Assumptions of Model
1. Charge is distributed in a regular array of tubes, beamlets.
2. Beamlets see radial space charge force until they overlap.
3. After overlapping the sc-force becomes small, the electrons are left with radial velocity which becomes emittance.

Radial electric field outside the tube/beamlet of charge:

\[E_r = \frac{\rho_l}{2\pi\varepsilon_0 r} \]

\[\rho_l = \frac{Q}{N_b l_b} = \frac{16r_0^2 Q}{\pi R^2 l_b} \]

\[E_r = \frac{8}{\pi^2} \frac{Q}{\varepsilon_0} \frac{r_0^2}{R^2 l_b r} \]

Integrate to get energy gain of electron at radial edge of beamlet:

\[\frac{p_r^2}{2m} = \frac{8Qr_0^2}{\pi^2\varepsilon_0 R^2 l_b} \int_{r_0}^{a r_0} \frac{dr}{r} = \frac{8Qr_0^2}{\pi^2\varepsilon_0 R^2 l_b} \ln a \]

Leap of faith: Assume \(\langle p_x^2 \rangle \approx \frac{p_r^2}{4} \)

Then the emittance definition:

\[\varepsilon_n = \sigma_x \sqrt{\langle p_x^2 \rangle} \frac{mc}{Q} \]

Gives the emittance due to the rectangular array of beamlets:

\[\Delta \varepsilon_n \propto \sigma_x \frac{2r_0}{\pi R \sqrt{Q \ln a}} \frac{1}{\varepsilon_0 mc^2 l_b} \]
Simple Model Compared to the Expt.

General parameters:
Laser Radius: $R = 0.6\text{mm} \Rightarrow \sigma_x = 0.3\text{mm}$
Bunch Charge: $Q = 250\text{pC}$
Bunch Length: $l_b = 6.6\text{ps} = 2\text{mm}$
Nominal Emittance: $\varepsilon_{\text{nominal}} = 0.45\text{microns}$

For 50 mesh pattern: $r_0 = 33\mu\text{m}$

\[
\frac{\Delta\varepsilon_n}{\sigma_x}_{50\text{mesh}} = 5.8\text{microns/mm}(\text{rms})
\]

\[\Delta\varepsilon_n|_{50\text{mesh}} = 1.7\text{microns}\]

\[\varepsilon_n|_{50\text{mesh}} = \sqrt{1.7^2 + 0.45^2} = 1.8\text{microns}\]

For 180 mesh, the emittance will be 180/50 = 3.6 times smaller: $r_0 = 9\mu\text{m}$

\[
\frac{\Delta\varepsilon_n}{\sigma_x}_{180\text{mesh}} = 1.6\text{microns/mm}(\text{rms})
\]

\[\Delta\varepsilon_n|_{180\text{mesh}} = 0.48\text{microns}\]

\[\varepsilon|_{180\text{mesh}} = \sqrt{0.48^2 + 0.45^2} = 0.65\text{microns}\]
GPT Simulation Shows Beamlet Expansion in Early Life of the Beam

50 Mesh Laser Shape

Bagel Laser Shape

time=-2.25e-012

time=-1.25e-012

GPT: General Particle Tracer, Pulsar Physics, www.pulsar.nl
Summary and Conclusions

- Measured Emittance and FEL Performance at 1.5 A for rectangular grid and radial symmetric laser transverse shapes.
- Found most uniform shape gives the lowest emittance and shortest gain length.
- Derived model for emittance growth based on radial expansion of beamlets driven by space charge force.
- Using this model, derived relation for emittance due to regular rectangular pattern. Reasonable agreement with measurements.
- Model can be extended to other radial shapes.
- Comparison with GPT simulation indicates most growth occurs during expansion during ~10s of ps.
- Particle tracking simulations using GPT are in progress.