The main goal of our experiment is the characterization of either extracted current and x-rays under different plasma conditions and in presence of a source of auxiliary electrons. The effect on the quality factor of the additional electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

Maximization of the warm component is mandatory to ensure high ionization rates and safe operations. Several techniques have been investigated in the last decade in order to increase the electron density: Addition of auxiliary electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

The CNTs electron gun is essentially made of three elements: a CNTs cathode obtained on a 300 mm thick silicon substrate, a 150 mm thick mica spacer and an anodic copper grid with quad cells of 350 mm side. CNTs eject electrons because of the field emission effect, i.e. quantum tunneling, which is obtained by applying an electric field higher than 3 V/µm.

The main goal of our experiment is the characterization of either extracted current and x-rays under different plasma conditions and in presence of a source of auxiliary electrons. The effect on the quality factor of the additional electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

Maximization of the warm component is mandatory to ensure high ionization rates and safe operations. Several techniques have been investigated in the last decade in order to increase the electron density: Addition of auxiliary electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

The CNTs electron gun is essentially made of three elements: a CNTs cathode obtained on a 300 mm thick silicon substrate, a 150 mm thick mica spacer and an anodic copper grid with quad cells of 350 mm side. CNTs eject electrons because of the field emission effect, i.e. quantum tunneling, which is obtained by applying an electric field higher than 3 V/µm.

The CNTs electron gun is essentially made of three elements: a CNTs cathode obtained on a 300 mm thick silicon substrate, a 150 mm thick mica spacer and an anodic copper grid with quad cells of 350 mm side. CNTs eject electrons because of the field emission effect, i.e. quantum tunneling, which is obtained by applying an electric field higher than 3 V/µm.

The main goal of our experiment is the characterization of either extracted current and x-rays under different plasma conditions and in presence of a source of auxiliary electrons. The effect on the quality factor of the additional electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

Maximization of the warm component is mandatory to ensure high ionization rates and safe operations. Several techniques have been investigated in the last decade in order to increase the electron density: Addition of auxiliary electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

The CNTs electron gun is essentially made of three elements: a CNTs cathode obtained on a 300 mm thick silicon substrate, a 150 mm thick mica spacer and an anodic copper grid with quad cells of 350 mm side. CNTs eject electrons because of the field emission effect, i.e. quantum tunneling, which is obtained by applying an electric field higher than 3 V/µm.

The main goal of our experiment is the characterization of either extracted current and x-rays under different plasma conditions and in presence of a source of auxiliary electrons. The effect on the quality factor of the additional electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

Maximization of the warm component is mandatory to ensure high ionization rates and safe operations. Several techniques have been investigated in the last decade in order to increase the electron density: Addition of auxiliary electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

The CNTs electron gun is essentially made of three elements: a CNTs cathode obtained on a 300 mm thick silicon substrate, a 150 mm thick mica spacer and an anodic copper grid with quad cells of 350 mm side. CNTs eject electrons because of the field emission effect, i.e. quantum tunneling, which is obtained by applying an electric field higher than 3 V/µm.

The main goal of our experiment is the characterization of either extracted current and x-rays under different plasma conditions and in presence of a source of auxiliary electrons. The effect on the quality factor of the additional electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

Maximization of the warm component is mandatory to ensure high ionization rates and safe operations. Several techniques have been investigated in the last decade in order to increase the electron density: Addition of auxiliary electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

The CNTs electron gun is essentially made of three elements: a CNTs cathode obtained on a 300 mm thick silicon substrate, a 150 mm thick mica spacer and an anodic copper grid with quad cells of 350 mm side. CNTs eject electrons because of the field emission effect, i.e. quantum tunneling, which is obtained by applying an electric field higher than 3 V/µm.

The main goal of our experiment is the characterization of either extracted current and x-rays under different plasma conditions and in presence of a source of auxiliary electrons. The effect on the quality factor of the additional electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

Maximization of the warm component is mandatory to ensure high ionization rates and safe operations. Several techniques have been investigated in the last decade in order to increase the electron density: Addition of auxiliary electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

The CNTs electron gun is essentially made of three elements: a CNTs cathode obtained on a 300 mm thick silicon substrate, a 150 mm thick mica spacer and an anodic copper grid with quad cells of 350 mm side. CNTs eject electrons because of the field emission effect, i.e. quantum tunneling, which is obtained by applying an electric field higher than 3 V/µm.

The main goal of our experiment is the characterization of either extracted current and x-rays under different plasma conditions and in presence of a source of auxiliary electrons. The effect on the quality factor of the additional electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

Maximization of the warm component is mandatory to ensure high ionization rates and safe operations. Several techniques have been investigated in the last decade in order to increase the electron density: Addition of auxiliary electrons can be done by means of active or passive methods (like alumina tubes and other techniques).

The CNTs electron gun is essentially made of three elements: a CNTs cathode obtained on a 300 mm thick silicon substrate, a 150 mm thick mica spacer and an anodic copper grid with quad cells of 350 mm side. CNTs eject electrons because of the field emission effect, i.e. quantum tunneling, which is obtained by applying an electric field higher than 3 V/µm.