Diagnostics during the ALBA Storage Ring Commissioning

U. Iriso, M. Alvarez, F. Fernandez, A. Olmos and F. Pérez

Accelerator Division, CELLS

10th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators
DIPAC11 - Hamburg, May 16-18, 2011
Contents

1. Introduction
2. Fluorescent Screens
3. Current Monitors
4. BPMs
5. Tune Measurement system
6. X-Ray Pinhole Camera
7. Visible Light Monitor
1. Introduction: ALBA Facility
1. Introduction: ALBA Facility

- Synchrotron Light Source in Barcelona
- Up to 30 beamlines (7 on day one)
- Full energy Booster for Top-up injection
- 3 GeV Storage Ring, 268m circumference
- Designed emittance: 4.3nm*rad
- Maximum design current: 400mA

- SR Commissioning started 8 March 2011
- BeamLine Commissioning Autumn 2011
- First Users: Spring 2012
1. Introduction: SR Commissioning

March 8th: Commissioning Start. (Shifts from 7am - 10pm)
March 9th: 1st Turn
March 13th: Stored Beam
March 16th: Beam Accumulated
March 16th: Synchrotron Light out to Diagnostics Hutch
April 1st: Stored 100mA
1. Introduction: Di components

Standard components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Acronym</th>
<th># units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescent Screen “In-air”</td>
<td>FS</td>
<td>5</td>
</tr>
<tr>
<td>Fluorescent Screen Horizontal</td>
<td>FSH</td>
<td>2</td>
</tr>
<tr>
<td>Beam Position Monitors</td>
<td>BPM</td>
<td>123</td>
</tr>
<tr>
<td>DC Current Transformer</td>
<td>DCCT</td>
<td>1</td>
</tr>
<tr>
<td>Fast Current Transformer</td>
<td>FCT</td>
<td>1</td>
</tr>
<tr>
<td>Annular Electrode</td>
<td>AE</td>
<td>1</td>
</tr>
<tr>
<td>Stripline BPM</td>
<td>SBPM</td>
<td>1</td>
</tr>
<tr>
<td>Scraper (Hor & Ver)</td>
<td>SCRH & SCRV</td>
<td>1 & 1</td>
</tr>
<tr>
<td>Beam Loss Monitors</td>
<td>BLM</td>
<td>128</td>
</tr>
<tr>
<td>X-Ray Pinhole Camera</td>
<td>Pinhole</td>
<td>1</td>
</tr>
<tr>
<td>Visible Light Monitor</td>
<td>BL34</td>
<td>1</td>
</tr>
</tbody>
</table>
1. Introduction: Di location

At S12: FS

At S04: FS

At S08: FS

At S04 - Di Section:

BSM

BLM

At Injection Straight:

SCRV

FSH

At S2 - Di Section:

Stripline

DCC
AE
FCT
Contents

1. Introduction
2. Fluorescent Screens
3. Current Monitors
4. BPMs
5. Tune Measurement system
6. X-Ray Pinhole Camera
7. Visible Light Monitor
2. Fluorescent Screens

- Conventional “in-air” model*
 - YAG:Ce screen is kept inside a closed shaft that keeps it away from vacuum
 - Inserted vertically with a pneumatic actuator
 - Screen center, Optics and CCD camera (Ethernet Basler Scout) are in the same axis

2. Fluorescent Screens

- Essential element to perform the 1st turn

\begin{align*}
\sigma_x &= 833\,\text{um} \\
\sigma_y &= 685\,\text{um} \\
\sigma_x &= 545\,\text{um} \\
\sigma_y &= 429\,\text{um} \\
\sigma_x &= 243\,\text{um} \\
\sigma_y &= 555\,\text{um} \\
\sigma_x &= 779\,\text{um} \\
\sigma_y &= 430\,\text{um}
\end{align*}
2. Hor Fluorescent Screens

- Located at Injection Straight
- Inserted horizontally with a motor
- Beam centroid inferred after beam analysis, adding calibration offset of YAG screen wrt stored beam
- Screen center, Optics and CCD camera are in the orbit plane

- Location:
 FSH1: downstream septum
 FSH2: downstream kicker
2. Hor Fluorescent Screens

- Very useful during all commissioning to optimize injection efficiency through the calculation of injected and kick angle.

FSH1

FSH2, Ki OFF

FSH2, Ki ON

X₀ = -22.6mm

X₀ = -21.5mm

X₀ = -16.2mm
Contents

1. Introduction
2. Fluorescent Screens
3. Current Monitors
4. BPMs
5. Tune Measurement system
6. X-Ray Pinhole Camera
7. Visible Light Monitor
3. Current Monitors

Fast and DC Current Transformers (FCT & DCCT):

- Mechanical design for ALBA SR in-house
- Coils: off-the-shelf products (Bergoz)
- Air-cooling circuit installed to prevent overheating
- Available from day-1 w.o. problems

Bergoz NPCT Card
6-1/2 Digit PXI Multimeter
Adlink SMX-2040

1 turn = 896ns
3. DCCT Performance

DCCT Performance:

- DCCT rms noise: +/- 2uA
- DCCT sensible to dipole cycling and Ta drifts (+/- 30uA)
- No overheating problems (so far, 100mA injected)
3. Current Monitors:

- Continuously used to check machine performance
- Example of analysis of a vertical instability:

SCRV closed from 10mm to 0.28mm produces beam losses (16mA) mainly in the last bunches of the train (suspected to be Fast Ion Instability)
1. Introduction
2. Fluorescent Screens
3. Current Monitors
4. BPMs
5. Tune Measurement system
6. X-Ray Pinhole Camera
7. Visible Light Monitor
4. BPMs

- 7 or 8 BPM/cell (120 BPMs): orbit control and interlock system
- 2 BPMs for Bunch-by-Bunch Feedback System
- 1 spare BPM for Beam Dynamics (Tune measurements)

- BPM block is composed by 7mm diameter button type feedthroughs
- Small electrode size and button-shell gap to reduce buttons heating

- Semi-Rigid PEEK cables as transition from feedthrough to RF coax cables
- Low-loss phase matched (<10deg) RF cables of wide variety of lengths [15m – 45m]

![Image of BPMs and related equipment]
4. BPMs

• Reading Electronics: Libera Brilliance
• Non-controlled temperature area/rack
• Digital conditioning (DSC) and calibration not yet applied
• BPMs used from SR commissioning day-1

Raw position meas during 40min @20mA:

- Not yet proper temperature regulation inside tunnel (+/- 0.1deg) neither on service area (+/- 1deg)
4. BPMs

- BBA routine partially ran on BPMs (90/120 Ver, 96/120 Hor)
- Most of the offsets inside +/- 200um (some BPMs to be measured again or crosschecked by alignment team)

No slow orbit correction for the time being (use Orbit Correction Application from MML -> beam within +/-0.5mm)
1. Introduction
2. Fluorescent Screens
3. Current Monitors
4. BPMs
5. Tune Measurement system
6. X-Ray Pinhole Camera
7. Visible Light Monitor
5. Tune Measurement System

Function Generator

Splitter-Combiner
rf multiplexer

Choose excitation plane

50W Amplifier
(Kick = 0.15 urad*)

λ/4 stripline
(@tunnel)

FG: Function Generator
Tek. AFG3102

Δ: 180° Split. Comb.
MiniC. ZFSCJ-2-2-S

S: 0° Split. Comb.
MiniC. ZFRSC-42-S+

MUX: Multiplexer
NI PXI-2593

AMP: Power Amplifier
IFI ML50, 50W

* U. Iriso, et al. Design of the stripline kickers
for ALBA, Proc. DIPAC09
5. Tune Measurement System

- Oscillations produced by a white noise signal around tune freq.
- Excitation are produced continuously → no trigger or synchronization is required
- Very useful for beam dynamics applications (chromaticity measurements)
1. Introduction
2. Fluorescent Screens
3. Current Monitors
4. BPMs
5. Tune Measurement system
6. X-Ray Pinhole Camera
7. Visible Light Monitor
6. X-Ray Pinhole Camera

- Transverse beam sizes \rightarrow emittance measurements
- To avoid diffraction limit, use x-rays from a bending magnet
- Magnification factor: 2
6. X-Ray Pinhole Camera

Water cooling for the 1mm thick Al-Window:

Max Heat Load: 4.7 W/mm²
Max Tᵃ: 129°C
Max Stress: 79 MPa

Pinhole construction*:
Two arrays of 4 W-bars, with slits spaced by [10, 50, 100μm]

Placed perpendicular one to another

Four motors allow controlling pinhole position and chose the desired hole

*Thanks to K. Scheidt & F. Ewald (ESRF)
6. X-Ray Pinhole Camera

- Pinhole Commissioning took 1-day after stored beam.

<table>
<thead>
<tr>
<th>Date</th>
<th>Conditions</th>
<th>X-ray Images</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011.03.25</td>
<td>one QP polarity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>swapped</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25mA, $X_V=0$</td>
<td>$\sigma_x=121\text{um}$, $\sigma_y=218\text{um}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25mA, $X_V=+3$</td>
<td>$\sigma_x=108\text{um}$, $\sigma_y=103\text{um}$</td>
<td></td>
</tr>
<tr>
<td>2011.03.28</td>
<td>QP polarity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>corrected during</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>shutdown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20mA, $X_V=0$</td>
<td>$\sigma_x=86\text{um}$, $\sigma_y=186\text{um}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20mA, $X_V=+3$</td>
<td>$\sigma_x=89\text{um}$, $\sigma_y=105\text{um}$</td>
<td></td>
</tr>
</tbody>
</table>
6. X-Ray Pinhole Camera

2011.05.11: After BBA and correct coupling

30 mA, $X_v=0.2$

$\sigma_x=72\mu m$

$\sigma_y=124\mu m$

20 mA, $X_v=0.2$

$\sigma_x=74\mu m$

$\sigma_y=41\mu m$

2011.05.11: Ver and Hor Beam size continuously monitored

![Graph showing beam size over time](image-url)
Contents

1. Introduction
2. Fluorescent Screens
3. Current Monitors
4. BPMs
5. Tune Measurement system
6. X-Ray Pinhole Camera
7. Visible Light Monitor
Radiation wavelength from a dipole emitted at different vertical angles.

- Select the visible range by placing the mirror at different vertical position.

- Mirror position (in-vacuum) controlled with thermocouples.
7. Visible Light Monitor

- At the Diagnostics Hutch:
 - CCD:
 Reference beam image
 - Streak Camera:
 Precisely infer longitudinal time bunch structure
 Slow sweep unit not yet working
 (image is integrated over 1ms)

Sigma = 33ps (\(V_{rf}=200\text{kV}\))
7. Visible Light Monitor

FIRST SYNCHROTRON LIGHT!!

U. Iriso

Diagnostics during ALBA SR Commissioning
7. Visible Light Monitor

FIRST SYNCHROTRON LIGHT!!
7. Visible Light Monitor
7. Visible Light Monitor
8. CONCLUSIONS

• Diagnostics components at ALBA combine off-the-shelf products with ad-hoc designs → Easy Di Commissioning
• FS, FSH, FCT, DCCT, BPMs worked since day-1 of commissioning without problems
• Diagnostics FE (pinhole and visible light) worked right after beam was accumulated
• Diagnostics components at ALBA eased an efficient commissioning

• Future plans:
 • Fine adjustments to increase Di performance
 • Implement Slow and Fast Orbit Correction
 • Install Fast Feedback Kickers to correct CBI
 • Streak camera measurements
Acknowledgements

→ thanks to the rest of the Accelerator Division (M. Pont, G. Benedetti, Z. Marti, M. Munoz, D. Einfeld...)
→ thanks to people in other divisions: J. Pasquaud (Engineering Div.), and D. Fernandez, S. Blanch, J. Moldes (Computing Div.)

→ Thanks for the advices from many colleagues in other machines:
G. Rehm and C. Thomas (Diamond), J.-C. Denard and L. Cassinari (Soleil), V. Schlott (SLS), K. Scheidt and F. Ewald (ESRF), P. Kuske (BESSY)
Extra slides
XSR or pinhole camera

- Transverse beam sizes \Rightarrow emittance measurements
- Simple pinhole system (no need for pinhole array)
- Pinhole material: Tungsten
- Magnification factor: 2
- Al vacuum window + Cu sloped block to filter x-rays ~ 18 keV
Visible Sync. Rad. front end

- Need to build a **mirror** with thermocouples to reflect just the visible part
- Light analysis is done in the optical hutch
- Bunch length measurements with **streak camera**
- Qualitative beam image with **CCD** camera

K. Scheidt, UV and Vis. Light diagnostics at the ESRF, Proc. of EPAC'96
BPM Buttons

<table>
<thead>
<tr>
<th></th>
<th>SR</th>
<th>Booster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hor. Sensitivity (mm$^{-1}$)</td>
<td>0.080</td>
<td>0.093</td>
</tr>
<tr>
<td>Ver Sensitivity (mm$^{-1}$)</td>
<td>0.075</td>
<td>0.093</td>
</tr>
<tr>
<td>Capacitance (pF)</td>
<td>2.7</td>
<td>3.2</td>
</tr>
<tr>
<td>Intrinsic resolution (μm)</td>
<td>11 (@0.1 mA and 4kHz)</td>
<td>45.5 (@0.1 mA and 1.2 MHz)</td>
</tr>
</tbody>
</table>

First 20 BPM buttons & Blocks just manufactured

BPM block welded to vac. chamber
BPM electronics

- One type of electronics for one type of monitor
- Contract signed with I-Tech for all BPMs (SR, Booster, LTB, BTS)
 Keeps system simple, eases maintenance...
- Sub-micron resolution, stability depending on current, temperature...
- Slow & Fast Orbit Correction schemes
- BPMs equipped with data acquisition for:
 -> Turn By Turn (1.1MHz)
 -> Fast Orbit Correction (4 kHz)
 -> Slow orbit Correction (4 Hz)
 -> Post Mortem buffer
 -> Other data acq. options on demand

TESTS STATUS:

- 30 Libera units & 4 Clock Splitters arrived for tests in Jan. 2007
- Res. around -40 dBm was out of the specs due to a wrong gain scheme → Corrected in 2 weeks → Acceptance Tests for approved for all units