Study for stochastic cooling at Nuclotron (JINR)

A. Sidorin, G. Trubnikov, N. Shurkhno, JINR, Dubna, Russia
T. Katayama, GSI, Darmstadt
R. Stassen, FZJ, Jülich

With grateful acknowledgement to
I. Meshkov, H. Stockhorst, L. Thorndall, F. Caspers, V. Lebedev,

COOL’13, 10th -14th June 2013, Mürren, Switzerland
Introduction

• The idea

Experiment on stochastic cooling at Nuclotron is a preparatory work for NICA collider

• 3 years and 3 runs to get longitudinal cooling
Cooling system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference, m</td>
<td>251.5</td>
</tr>
<tr>
<td>Ions</td>
<td>D⁺</td>
</tr>
<tr>
<td>Intensity, particles</td>
<td>10⁹-10¹⁰</td>
</tr>
<tr>
<td>Kinetic energy, GeV/u</td>
<td>3</td>
</tr>
<tr>
<td>Rev. frequency, MHz</td>
<td>1.158</td>
</tr>
<tr>
<td>Flattop time, s</td>
<td>480</td>
</tr>
<tr>
<td>Phase slip factor</td>
<td>0.034</td>
</tr>
<tr>
<td>Initial dp/p</td>
<td>0.55×10⁻³</td>
</tr>
<tr>
<td>Cooling system</td>
<td>Long., notch filter</td>
</tr>
<tr>
<td>Bandwidth, GHz</td>
<td>2-4</td>
</tr>
<tr>
<td>ToF P-K, ns</td>
<td>431.88</td>
</tr>
<tr>
<td>Pick-up impedance, Ohm</td>
<td>144</td>
</tr>
<tr>
<td>Kicker impedance, Ohm</td>
<td>576</td>
</tr>
<tr>
<td>Power for the kicker, W</td>
<td>18</td>
</tr>
</tbody>
</table>
Pick-up and kicker

Ring-slot coupler (pick-up and kicker)

Combiner board

Single ring with 8 electrodes, 9 Ohm in sum mode

“Study for stochastic cooling at Nuclotron, JINR”, N. Shurkhno
Pick-up and kicker

PU combiner boards

Pick-up outputs combination

Pick-up electronics

Kicker electronics

"Study for stochastic cooling at Nuclotron, JINR", N. Shurkhno
Optical notch-filter and system delay

- Notch depths > 40dB
- Maximum freq. dispersion ~ 10kHz (~10^6) (maximum deviation of notch position in pass-band)
- Software for automatic adjustment
- Delay line is the part of the optical link (=fibers + fine delay)
Photos

Dismantled notch-filter in the lab

Cooling system rack at Nuclotron

“Study for stochastic cooling at Nuclotron, JINR”, N. Shurkhno
Open-loop measurements

This was in 2012:

That is now:

“Study for stochastic cooling at Nuclotron, JINR”, N. Shurkhno
Yes, we cool!

Ions: \(D^+ \)

Intensity: \(2 \times 10^9 \)

Cooling time: 480 s

Initial \(dp/p \): \(0.55 \times 10^{-3} \)

Final \(dp/p \): \(0.25 \times 10^{-3} \)
Transverse Schottky-noises

Horizontal Schottky noise:

Vertical Schottky noise:

\[q_x \approx 0.28 \]

\[q_y \approx 0.32 \]
Simulations

The cooling process was calculated by solving the Fokker-Planck equation.

Gain behaviour in the passband:

The main amplifier was in saturation during cooling, so \(\text{gain} = ? \text{ dB} \). It can be roughly estimated with known output power of saturated amplifier, system transfer function and distribution function: \(g \sim 114 \text{ dB} \).

Cooling simulation with 110 dB, delay error 20 ps, notch error 10 ps:

Simulation with estimated gain and “ideal” system gives the final momentum spread - 0.1\(\times 10^{-3} \) (2.5 lower than real).

With **110 dB gain**, 20 ps delay error and 10 ps filter delay error simulation repeats the experiment.
Conclusion and outlook

• The 1st stage of stochastic cooling experiment at Nuclotron has finished successfully: *during the Nuclotron run in March’13 the momentum cooling of deuteron beam was achieved for the first time and fractional parts of the betatron numbers were measured.*

• For the 2nd stage of an experiment it is planned to have C⁶⁺ beam during December run. This should allow us the chromaticity measurements and in principle make possible the Palmer and betatron cooling experiments.