

China Spallation Neutron Source Design and R&D

Jie Wei for CSNS teams

Co-authors: S.X. Fang, J. Feng, S.N. Fu, H.F. Ouyang, Q. Qin, H.M. Qu, J.Y. Tang, F.W. Wang, S. Wang, Z.X. Xu, Q.W. Yan, J. Zhang, Z. Zhang

Institute of High Energy Physics, China Institute of Physics, China Brookhaven National Laboratory, USA

- Project overview
- Accelerator design and prototyping
- Target system R&D
- Instrument system R&D
- Summary

Types of SNS accelerators

- Continuous-wave facilities Driven by a high intensity proton cyclotron I.2 MW SINQ (PSI) driven by 590 MeV cyclotron Long (ms) pulse facilities Driven by a high intensity proton linac □ 1 MW LANSCE (LANL) driven by 800 MeV linac Short (µs) pulse facilities Partial energy linac and rapid-cycling synchrotron(s): ISIS (RAL) driven by 70 MeV linac/800 MeV RCS J-PARC driven by 400 MeV linac/3 GeV RCS/50 GeV MR □ Full-energy linac and an accumulator ring:
 - SNS (ORNL) driven by 1 GeV linac/accumulator

3

Kinetic energy [GeV]

MR M Physics nces

High power accelerator applications//S

- CW and long pulse applications
 - High average power, high current proton source, high duty factor (~10% or higher) to minimize mechanical shock, ~1 GeV to reduce power deposition in window & cost

□ Irradiation, Rare isotope, ...

Transmutation of nuclear waste

Accelerator driven subcritical power generation

Short pulse applications

High peak power, H- ion source for accumulation, pulsed high intensity secondary beam generation (duty factor < 10^{-4})

Neutrons, Kaons, neutrinos, muons for neutrinos, muons for muon collider, radioactive isotope (ISOL)

5

Projects proposed in China

China Spallation Neutron Source (CSNS) – Chinese Academy of Sciences and Guangdong

Huge domestic demand from the user community
 Compliments light sources (4 in China) and reactors
 Bridges the technology towards ADS

- Accelerator Driven Sub-critical programs
 - Compliments fast-breeder reactor (FBR) and pressured water reactors (PWR)
 - Transmutation of waste from nuclear power plants
 - No long-lifetime waste, more abundant fuel (²³⁸U), higher safety/possibly lower cost, less proliferation problem

Proton/ion cancer therapy (synchrotron based)

6

CSNS layout

- Linac: H- beam, 81 MeV (DTL) to 250 MeV (SCL)
- Rapid-cycling synchrotron: 1.6 GeV at 25 Hz

WEZMA02 Wei 2007-1-31

BROOKHAVEN

Challenges

Physics:

Space charge & halo, electron cloud, fringe field, impedance & instability, diagnostics (same as those for SNS and J-PARC)

Engineering:

- High-efficiency, high-yield target & moderator, rapid-cycling technology (power supply, ceramic vacuum chamber, RF shielding, RF system, magnet/coil ...), high-intensity source, RFQ, Linac and transport, collimation, remote handling, coating, diagnostics
- Management (budget):
 - SNS: US\$1.4B + upgrade funds
 - □ J-PARC: ~US\$1.5B + people
 - CSNS: ~ US\$0.2B; (accel.: budgeted < \$100M extremely tight)</p>
- Primary challenges:
 - Complete project scope at high quality with limited budget
 - Reserve potential for future development in phases

Design philosophy

- Fit in China's present economical situation
 Total phase-I cost ~1.46B CNY (~US\$188M)
- An advanced facility with upgrade potential
 Phase I beam power goal: 120 kW; phase II: 240 kW
 Expandable to higher power/2nd target
- Adopt mature technology as much as possible
 First high-intensity proton machine in China
 High reliability for our users
- Closely collaborate with world leaders & develop domestic technology to control cost
 Keep final fabrication in China as much as possible

CSNS proposed budget

	l t em	Cost [10k CNM]	Per cent age [🐐
1	Convent i onal engi neer i ng	44, 566	30. 4
1. 1	Oivil construction	19, 629	13. 4
1. 2	Conventional facility	20, 223	13. 8
1. 3	Installation	4, 714	3. 2
2		92, 273	63. 0
2. 1	Li nac	15, 950	10. 9
2. 2	Synchrotron & transports	42, 578	29. 1
2.3	Target station	16, 126	11. 0
2.4	Instrument at ions	13, 810	9.4
2.5	Controls	3, 809	2.6
3	Project management	2, 666	1. 8
4	Cont i ngency	7, 000	4.8
Tot al		146. 505	100. 0

CSNS project schedule

WEZMA02 Wei 2007-1-31

Limited R&D fund for prototyping CSNS

- Funds are very limited (US\$3.8 M)
- Limited prototyping efforts
 - □ Five accelerator systems:
 - DTL (half tank), Ring magnet (2), RF cavity (1), vacuum duct (2), magnet power supply (1)
 - Target body material tests, moderator & cooling system, decouple & poison
 - Neutron super-mirror guide, background chopper, neutron detector
- Much more R&D funding is needed; schedule is extremely tight

Ion source

Collaborating with & assisted by ISIS: Penning H⁻ source

Backup: SNS type RF source with external antenna

LEBT & pre-chopper

RFQ

H.F. Ouyang, Z.H. Zhang, J. Li et al

CHINA SPALLATION NEUTRON SOURCE

- Following the ADS/RFQ design (352MHz)
- 324 MHz, 4-vane, 3 MeV output energy
- Domestic vendor experience
 - World class quality at a fraction of "world standard" cost

Commissioning success in 2006 CSNS

RFQ 出入口ACCT信号:

入口 I_{in} =44mA

出口 I_{out} =41mA.

下降。

92% transmission; 6% duty

First digital LLRF developed in China

S. Fu, H.F. Ouyang, Z.H. Zhang et al 黄色:RFQ腔内射频场信 号,凹部:束流负载。

蓝色:输入耦合器反射信 号,凹部:束流负载使反射

BROOKHAVEN

stitute of High Energy Physic. Chinese Academy of Sciences

Drift tube linac prototyping

- Phase I to 81 MeV with four DTL tanks
- 324 MHz with duty factor < 3% (frequency chosen by several projects/programs)
- Tank: Electro vs. explosive forming explored – seeking collaboration with PEFP

Linac RF system

- R&D on HV power supply
 No step-up high voltage transformerstand high voltage multi-phase rectifiers (the best
 - IGBT frequency converter^{c(仍仍小好过)}phase mains to 25 Hz single phase)
 - synchronous phase-lock control between AC charging and DC pulse discharging

Ring lattice

CSNS CHINA SPALLATION NEUTRON SOURCE

- Four-fold symmetry
 - Separated functions
- FODO arc
 - Easy correction
- Dispersion-free doublet straight
 - long, uninterrupted straight for collimation & injection
- Missing-gap momentur..
 collimation
 - High efficiency

Ring magnet

- Large aperture, laminated magnets with eddycurrent cuts near the ends and plates
 - Dipole: stranded Al wire coil; successfully developed by 3 domestic vendors
 - Quad: considering split hollow-Cu wire
 - Can be used for rapid cycling medical machines

Ring vacuum

- Ceramic vacuum chamber of
 Metallic brazing (J-PARC) and
- Possible external wrap-on R
- Quadrupole duct developed
- Dipole duct: parallel develop (assistance from ISIS and

Ring radio-frequency system

- Ferrite-loaded RF cavity 1 2.5 MHz
- Test of ferrite rings supplied by BNL etc.
- Controls: feed-forward, dynamic tuning, feedback, radial & phase loops

Target material R&D

- Corrosion test of Tungsten
- Ta cladding by Hot Isostatic Pressing
- Plasma coating (air or vacuum) coating
 - Uniformity, strength, porosity
- Supersonic plasma spray (Ta-Ni-W)
- W-Re alloy

Target station

Instrument layout

WEZMA02 Wei 2007-1-31

國科學院為能物理研究所 stitute of High Energy Physic. Chinese Academy of Sciences

WEZMA02 Wei 2007-1-31

- CSNS is progressing with limited funds under tight schedule
- Priority: quality/user reliability, cost, future potential
- To accomplish the project with an extremely tight budget, we must
 Develop domestic technology
 Seek world-wide collaboration

The Eighteenth Meeting of the International Collaboration

on Advanced Neutron Sources

April 25-29, 2007 Dongguan - China

- C1 Accelerator system development (front end & linac)
 - D. Faircloth (ISIS), (<u>D.C.Faircloth@rl.ac.uk</u>) ok
 - K. Hasegawa (J-PARC), (<u>hasegawa.kazuo@jaea.go.jp</u>) ok
 - H.F. Ouyang (<u>ouyanghf@mail.ihep.ac.cn</u>) ok
- D1 Accelerator system development (ring)
 - S. Henderson (SNS), (<u>shenderson@ornl.gov</u>) ok
 - A. Chao (SLAC), (<u>achao@slac.stanford.edu</u>) ok (may not attend)
 - S. Wang (<u>wangs@ihep.ac.cn</u>) ok
- F1 Accelerator and target/experiment interface
 - G. Murdoch (SNS), (<u>murdochgr@ornl.gov</u>)
 - J.Y. Tang (<u>tangiv@ihep.ac.cn</u>) ok
- G1 Accelerator commissioning and operations
 - D. Findlay (ISIS), (<u>D.J.S.Findlay@rl.ac.uk</u>) ok
 - J. Galambos (SNS), (idg@ornl.org) ok
 - S.N. Fu (<u>fusn@ihep.ac.cn</u>) ok
- H1 Accelerator projects in China
 - J. Xia (IMP), (xiajw@impcas.ac.cn)
 - Z.T. Zhao (SSRF), (<u>Zhaozt@ssrc.ac.cn</u>) ok
- J1 Medical applications
 - S. Peggs (BNL), (peggs@bnl.gov) ok (f)
 - L. Teng (ANL), (teng@aps.anl.gov) ok (f)
 - Q. Qin (<u>qinq@ihep.ac.cn</u>) ok
- K1 ADS, RIA, Drivers
 - J, Lagniel (CEA), (<u>iean-michel.lagniel@cea.fr</u>) ok
 - W.T. Weng (BNL), (weng@bnl.gov) ok
 - X.L. Guan (CIAE), (<u>qxl@iris.ciae.ac.cn</u>) ok

WEZMA02 V

XVIII

Thank you!

Main accelerator parameters

CSNS CHINA SPALLATION NEUTRON SOURCE

Table 1: CSNS accelerator primary parameters.Project PhaseIIIII'Beam power on target [kW]120240500
Beam power on target [kW] 120 240 500
1 011
Proton energy on target [GeV] 1.6 1.6 1.6
Average beam current [μ A] 76 151 315
Pulse repetition rate [Hz] 25 25 25
Proton per pulse on target [10 ¹³] 1.9 3.8 7.8
Pulse length on target [ns] <400 <400 <40
Linac output energy [MeV] 81 134 230
Ion source/linac length [m] 50 76 86
Linac RF frequency [MHz] 324 324 324
Macropulse ave. current [mA] 15 30 40
Macropulse duty factor [%] 1.1 1.1 1.7
LRBT length [m] 142 116 106
Synchrotron circumference [m] 230.8 230.8 230.
Ring filling time [ms] 0.42 0.42 0.68
Ring RF frequency [MHz] 1.0-2.4 1.3-2.4 1.6-2
Max. uncontr. beam loss [W/m] 1 1 1
Target material tungsten
Moderators H ₂ O, CH ₄ , H ₂
WEZMA02 Wei 2007- Number of spectrometers 5 18 >13

CSNS Tungsten Target

- cladding with Tantalum
- 40 high x 100 wide x 400 long (mm)--pieces stacking
- Heavy water cooling, 1.5mm gaps between both disks for cooling

WEZMA02 Wei 2007-1-31

CSNS Be/Fe Reflector

Be Ø800 x 1000mm

Iron \emptyset_{in} 800/ \emptyset_{out} 2000mm x 1000mm

Moderators

Top upstream H₂O, Decoupled

300 K

Top downstream CH₄ ,Decoupled+Poisoned

100 K

with premoderator

Bottom

H₂,Coupled

20 K

with premoderator

Example: Monte Carlo Simulation to optimize the neutron optics for the high intensity powder diffractometer

Target materials

CSNS CHINA SPALLATION NEUTRON SOURCE

Tungsten becomes brittle by radioactive damage and easily corrodible under heavy water coolant.

- •Ta cladding on W by hot isostatic press.
- Fabrication of W-Re (Re 25%) alloy.

W-Re alloy (Re 25%)

Homogeneity by supersonic

Ta-W interface

WEZMA02 Wei 2007-1-31

國科學院為能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences Neutron guide is an important neutronopticalcomponentstotransferneutronsefficiently to sample studied.

• Small neutron supermirror film with m = 2 deposited successfully.

• New sputtering system to fabricate large area supermirror film.

