Accelerator Science and Technology Centre

Upgrades to the ISIS Spallation Neutron Source

C.R. Prior

ASTeC Intense Beams Group Rutherford Appleton Laboratory, U.K.

ISIS - the World's Most Powerful Pulsed Neutron Source

2006

- ISIS today
- 2006 Injector upgrade
- Dual Harmonic RF
- New Target Station (TS2)
- Front-end Test Stand (FETS)
- Linac development (EU/CARE/HIPPI)
- Motivation for a future high intensity proton driver
- Ideas for future ISIS upgrades

ISIS sited at Rutherford Appleton Laboratory, UK

RAL Today

ISIS: a 200-300 µA Neutron Source

Serves as benchmark for development of other spallation neutron sources: SNS, ESS, facilities in China, studies in India.

- 70.4 MeV H- linac feeding an 800 MeV rapid cycling synchrotron operating at 50 Hz
- Mean ring radius $R_0 = 26$ m
- Charge-exchange injection with Al₂O₃ stripping foil
- ~10% beam loss in first 1 ms of cycle
- 2 bunches each of ~120 ns duration at tantalum-clad tungsten target.
- 200 µA of beam current, ~160 kW beam power. ←2002
- Injector recently upgraded with addition of a Radio-Frequency Quadrupole.
- Combined h=2/h=4 RF system
 installed to upgrade machine to
 ~300 µA, 240kW
- £140 m approved for new 10 Hz target station (under construction).

Radio Frequency Quadrupole (RFQ)

Old Cockcroft-Walton pre-injector

RFQ complete assembly with vacuum pumps and solenoids

ASTeC.

Dual Harmonic RF Accelerating System

 4 new h=4 cavities to supplement 6 existing h=2 cavities (RAL-KEK-ANL collaboration)

 $V(\phi, t) = \hat{V}(t) \left[\sin \phi - \delta \sin \left(2\phi + \vartheta \right) \right]$

- Ratio of h=2:h=4 voltages δ varied with time.
- Relative phase θ varied with time.
- Gives increased stable region in longitudinal phase space.
- Increases bunching factor and allows injection of more particles without increase in level of space charge.

Dual Harmonic RF: Simulation of 3 × 10¹³ ppp

MOMENTUM SPREAD v. PHASE

e10⁻¹

Simulation show ~0.5% beam loss during injection and trapping; some very small loss (<0.1%) at about 3-4 ms (~200 MeV).

Designed for 10-20% increase in intensity but improvement in bunching factor suggests could increase by 50%:

 $160 \text{ kW} \rightarrow 240 \text{ kW}$

November 2006

- ISIS running with only two of four h=4 cavities in operation.
- Settings for single harmonic cavities as for normal ISIS operation.
- Does not correspond to dual harmonic design specifications.

Nevertheless:

- Beam losses more than halved 97% transmission: highest trapping efficiency ever achieved.
- Note small loss at 3-4 ms

Restoration of Status Quo

Unoptimised system exceeds 200 μ A, giving confidence in sizeable increase when remaining h=4 cavities are switched in and correct settings are in place.

ISIS Second Target Station Project (TS2)

- Major investment to extend capability and capacity of ISIS to meet future scientific needs in key areas of:
 - Soft Matter
 - Advanced Materials
 - Bio-materials
 - Nano-technology
- New 10 Hz target station, TS2
 - takes one pulse in five from ISIS synchrotron to handle the increased ISIS beam power.
- Low power:
 - 48 kW power
 - 60 μA current
- Design optimised for cold neutron production

ISIS Second Target Station Project

TS2 Experimental Hall

TS2 Project Milestones

April 03	DTI announcement of
	funding for project

- Sept 04 Building structure complete
- Oct 06 Buildings complete
- Sep 07 EPB, Target station complete
- **Oct 07** 1st proton beam to target
- **Nov 07** 1st Instrument operation
- June 08 Complete instrument installation
- Oct 08 Start user programme

Buildings	£32M
Proton Beam	£31M
Target Station	£30M
Contingency	£10M
Instruments	£40M

Operating cost ~ $\pm 5 - 8M$ per year

ISIS Second Target Station Spend Profile

Accelerator Science and Technology Centre

TS2 Target Station Monolith Construction

TS2 Target Station and Services Area Construction

Accelerator Science and Technology Centre

TS2 Target Station and Services Area Construction

ISIS 2007

Generic R&D

Motivation from studies for

- Spallation Neutron Sources (ESS, SNS)
- Proton drivers for a Neutrino Factory
- Proton driver at Fermilab

Front End Test Stand (FETS)

FETS main components:

- High brightness H⁻ ion source.
- Magnetic Low Energy Beam Transport (LEBT).
- High current, high duty factor Radio Frequency Quadrupole.
- Very high speed beam chopper (3 MeV).
- Comprehensive diagnostics.

Ion Source

Present operation:

- Penning H- ion source
- Surface Plasma Source
- 35 mA through 0.6×10 mm aperture (≈ 600 mA/cm2)
- 200-250 μs, 50 Hz, ~1% duty cycle
- 0.17 π mm mrad (@ 665 keV, 35 mA)

Goals:

- Double output current: $35 \text{ mA} \rightarrow 70 \text{ mA}$
- Increase pulse length: $200 \ \mu s \rightarrow 2 \ ms$
- Improve emittance $\epsilon_{nrms}=0.2 \pi \text{ mm.mrad}$
- Maximize lifetime ≥10 weeks

Ion source development: complete assembly

Improved extraction geometry; addition of a separate Penning field magnet

Ion Source Development

Ion source, without extraction electrode

Ion source fitted on RFQ assembly

ASTeC

Low Energy Beam Transport

- A 3 solenoid magnetic LEBT is being designed, based on the successful ISIS RFQ injector.
- An electrostatic LEBT has been rejected due to the close proximity of the caesiated ion source.
- Optimisation of the magnetic design is near completion

First simulations used an idealised beam of the required emittance based on ISIS LEBT measurements.

($\epsilon_{x,rms}$ =0.33 π mm.mrad; $\epsilon_{y,rms}$ =0.33 π mm.mrad)

FETS: 324 MHz Radio-Frequency Quadrupole

- Initial beam dynamics design completed for a 324 MHz RFQ.
- Shows negligible emittance growth; 94% transmission for an ideal 60 mA beam.
- A 0.5 m, 324 MHz 4-vane RFQ cold model is almost complete. The cold model designed contains all the significant features of the final 4 m long design.

Machining operations were tested in Aluminium initially

FETS: RFQ Cold Model

A braze test piece has been completed

FETS: Cavity Field Measurements

A computer controlled bead pull perturbation system is under development to perform cavity field measurements on the cold models

FETS: High Power Klystron

A Toshiba E3740A 2MW high power pulsed klystron has been delivered. European tender started for klystron PSU.

Fast Beam Chopper

A novel tandem chopper technique has been developed at RAL to overcome the conflicting requirements of fast rise time (< 2ns) and long flat-top (up to 100 μ s).

Chopping facilitates

- very low loss ring injection (10⁻⁴) for hands-on maintenance.
- provides a gap for the ring extraction kickers to come on.

FETS: Fast Beam Chopper

- A 'fast' chopper removes 3-4 microbunches to create a short, clean gap in which the field of a 'slow' chopper can rise.
- The fast pulser is limited in flat-top but can switch between bunches.
- The slow pulser has a longer rise time but can generate the required flat-top.
- The system operates in reverse after chopping is completed.

A state of the art fast switch developed for RAL has achieved ± 1.4 kV, 15 ns flat top, with rise and fall times less than 2 ns.

Slow chopper has met all specifications except for required duty factor

FETS: Chopper Buncher Cavities and Quadrupoles

The shortest solution will require novel, compact, high gradient quadrupoles and DTL-like cavities.

High Current 180 MeV H⁻ Linac Studies

- An H⁻ linac to ~200 MeV is common to all RAL proton accelerator designs, whether for neutron generation or as the driver for a muon-based neutrino factory.
- RAL's work progresses in parallel with similar studies at CERN for Linac4 (recently approved for construction).

Accelerator Science and Technology Centre

ISIS Upgrades

$\rightarrow \frac{1}{2} \rightarrow 1 \rightarrow 2 \rightarrow 5 \text{ MW}$

1/2 MW Upgrade I

- Replace existing 70MeV linac with new injector.
- Injecting at 180 MeV halves the spacecharge tune depression and allows more beam to be accelerated.
- Present injection geometry, some upgrades to ring (RF); use existing target station?
- Could increase repetition rate to 64 Hz with same peak RF voltages.
- Significant power increase

 $240 \text{ kW} \rightarrow \text{~}500 \text{ kW}$

- 2 bunches per pulse each of 3.75×10¹³ protons
- Advantage of replacing old equipment and good potential for future upgrades.
- BUT: target station is certainly limited to ½ MW and may not take more than ¼ MW

1/2 MW Upgrade II

- Build a new 800 MeV ring in present synchrotron tunnel.
- Inject 2 extra bunches
- Doubles beam power
- Better with new 180 MeV linac
- 4 bunches per pulse each of ~1.85×10¹³
- May be construction difficulties in ISIS tunnel.

Upgrades to 1 MW and above

- ISIS space charge limited
- Solution lies in new rings and higher energy
- Requires new target station(s)
 - Cost does not rise in proportion
 - Significantly more expensive
- Raise energy to ~3 GeV required for 1 MW

New Synchrotron

ASTeC

1 MW Upgrade with New Synchrotron I

- One new synchrotron ring.
- New target station TS3 designed for ≥ 1 MW.
- 3 GeV, 50 Hz, R=3R₀, h=6 (or 12) for neutron production.
- Takes the two bunches from ISIS, bucket to bucket matching (very low loss).
- 2 bunches per pulse each of 1.85×10^{13}
- Injector might also be upgraded to 180 MeV for more beam power.
- Ring could also accelerate to 8 GeV at 16.7 Hz.
 - Used for bunch compression (~1 ns) and target tests for a neutrino factory.

ASTeC.

1 MW Upgrade with New Synchrotron II

- Add the 3 GeV synchrotron and build a second 800 MeV synchrotron in the ISIS tunnel
- Build TS3
- 4 bunches per pulse each of 1.85×10¹³ protons at 50 Hz
- ~1.8 MW
- Improved with 180 MeV linac
- Construction difficulties

ASTeC.

2.5 MW Upgrade – a new booster system

- Construct a new booster into the 3 GeV synchrotron.
- 180 MeV linac feeding two 50 Hz, h=3, 1.2 GeV synchrotrons with radius 39 m.
- All 6 buckets in the main synchrotron are filled.
- 6 bunches per pulse each of 1.85×10¹³ protons.
- ~2.7 MW at TS3 target.
- A stand-alone system (ISIS2) and ISIS1 could continue to operate as at present.

Other Possibilities I

- Low energy (180 MeV) is needed for a neutrino factory (ns bunch length)
- For neutrons, easier to inject at higher energy (less space charge)
- Build a new 800 MeV linac, accumulate in a single booster ring, and accelerate in one 3 GeV synchrotron.
- Either in stand-alone mode with ISIS1 in parallel, or close down ISIS1 entirely.

OR:

- Add a second main synchrotron, run both at 25 Hz to 6 GeV
- 6 bunches of ~1.5×10¹³ protons in each ring
- Stand-alone ISIS2 \geq 4 MW

Other Possibilities II – Neutron Optimised Ring

- Take half the beam from ISIS (2 bunches at 25 Hz.)
- Accelerate to 3.5 GeV
- \geq 0.5 MW on TS3
- 0.12 MW to TS1+TS2.
- For 1 MW:
 - Build 800 MeV storage ring above new RCS
 - Holds 2 bunches for 20 ms
 - Then accelerate 4 bunches to 3.5 GeV in RCS at 25 Hz
 - All pulses go to TS3
- OR storage ring could be a second 3.5 GeV RCS operating on successive half cycles (2 bunches at 50 Hz)
- Could also use 180 MeV linac to ~double number of protons per bunch.

The Future

UK Strategy

- Supporting appropriate investment in the existing facilities
 - ISIS accelerators
 - ISIS target stations
 - ISIS instruments
 - ILL
- Exploring, within an international context and in a timely manner, scientific and technological opportunities for a next generation neutron source for Europe.
- The UK has the potential to build a megawatt-class spallation neutron source through the upgrade of ISIS, but will defer further planning for this option until the outcome of the wider discussions on European plans is known

