The BEPCII: Construction and Initial Commissioning

On behalf of the BEPCII Team

C. Zhang

Jan. 31, 2007, APAC2007

RRCAT, Indore, India

Image © 2007 NASA © 2007 Europa Technologies

Google

Pointer 41°34'02.82" N 110°38'52.20" E

Streaming |||||||||| 100%

Eve alt 9792.95 mi

The construction of the BEPCII has started since beginning of 2004. In the next APAC, APAC07, we should be able to report some results of BEPCII commissioning.

Summary

The Milestones

January 2004	Construction started
May. 4, 2004	Dismount of 8 linac sections started
Dec. 1, 2004	Linac delivered e ⁻ beams for BEPC
Mar. 19, 2005	First e ⁺ beam of 50mA obtained
July 4, 2005	BEPC ring dismount started
Mar. 2, 2006	BEPCII ring installation started
Nov. 13, 2006	BEPCII ring commissioning started
Nov. 18, 2006	First e ⁻ beam stored in the ring
Dec. 25, 2006	Beams provided for SR users

(1) General Description

The BEPCII serves the purposes of both high energy physics experiments and synchrotron radiation applications.

Beam energy range	1–2 GeV			
Optimized beam energy region	1.89GeV			
Luminosity @ 1.89 GeV	1×10 ³³ cm ⁻² s ⁻¹			
Injection from linac	Full energy injection: <i>E_{inj}</i> =1.55–1.89GeV			
Dedicated SR operation	250 mA @ 2.5 GeV			

Main Parameters

Parameters		Unit	BEPCII	BEPC	
Operation energy (E)		GeV	1.0-2.0	1.0–2.5	
Injection energ	y (E _{inj})	GeV	1.55–1.89	1.3	
Circumferenc	e (C)	m	237.5	240.4	
β -function at IP	$(\boldsymbol{\beta}_x^*/\boldsymbol{\beta}_y^*)$	cm	100/1.5	120/5	
Tunes (v_x/v_y)	(v_s)		6.57/7.61/0.034	5.8/6.7/0.02	
Hor. natural emit	tance (\mathcal{E}_{x0})	mm·mr	0.14 @1.89 GeV	0.39 @1.89 GeV	
Damping time	$(\tau_x/\tau_y/\tau_e)$	133	25/25/12.5 @1.89 GeV	28/28/14@1.89 GeV	
RF frequency	$V(f_{rf})$	MHz	499.8	199.533	
RF voltage per ring (V _{rf})		MV	1.5	0.6–1.6	
Bunch number (N_b)			93	2×1	
Bunch space	ing	m	2.4	240.4	
Beam current	Colliding	mA	910 @1.89 GeV	~2×35 @1.89 GeV	
Deam current	SR		250 @ 2.5GeV	130	
Bunch length (cm) <i>o</i> į	cm	~1.5	~5	
Impedance 2	Z/n ₀	Ω	~ 0.2	~4	
Crossing an	Crossing angle		±11	0	
Vert. beam-beam	param. ξ _y		0.04	0.04	
Beam lifetime		hrs.	2.7	6-8	
luminosity@1.8	9 GeV	10 ³¹ cm ⁻² s ⁻¹	100	1 6	
	AN VIE STA				

Detail machine physics issues refer to G. Xu, et al, Proc. of EPAC 2004, July 2004.

e⁺-e⁻ Colliders: Past, Present and Future

C. Biscari, Workshop on e⁺e⁻ in 1-2 GeV Range, September 10-13, 2003, Italy

Three ring structure

(2) Construction

Injector Linac

Storage Rings

• BESIII & BSRF

2.1 The Injector Linac

- Basic requirement:
 - □ Higher intensity: e^+ injection rate \geq 50 mA/min.;
 - □ Full energy injection with E=1.55 ~ 1.89 GeV;
- To enhance the current and energy of the electron beam bombarding the target and to reduce the beam spot;
- To design and produce a new positron source and to improve its focusing;
- To increase the repetition rate from present 12.5 Hz to 50 Hz.
- To apply multi-bunch injection (*f_{RF}/f_{Linac}=7/40*);

Measures to reach the goals

New e ⁻ Gun	High current ; low emittance
New e ⁺ Source	High e+ yield; Large capture acceptance
3) New RF System with phasing loop	High RF power output; Stable phasing loops
4) New Beam Tuning Devices	Orbit correction; Optimum optics
5) Other System's Upgrade	Microwave system, Vacuum, Instrumentation, Control.

New Electron Gun

Parameters	Unit	BEPCII
Cathode		EIMAC Y796
Beam current	Α	10
Pulse length	ns	1 (FWHM)
Emittance (norm.)	μm	14
Accelerating voltage	kV	120~200 Pulse / 3µs
Heater volt. /current	V/A	6~8/5~7.5
Grid voltage	V	0~250
Grid pulse	V	-300 ~ -700
Bias voltage	V	+150 ~ +300
Operating Mode		1 or 2 Bunches
Repetition Rate	Hz	50

New Positron Source

A flux concentrator is employed to have a large e⁺ acceptance: L = 10 cm , B = 5.3 T >0.50 T, Φ = 7 mm \rightarrow 52 mm.

New RF Power Sourse

50MW new klystrons New modulators with high power 320 kV × 360 A. High voltage stability ≤ ±0.15%

Microwave system

New Accelerating Structure (20 MV/m)

High power Wave Guide valve

Phase control system

I/Q demodulator based PAD

Beam orbit stable in operation

Last 3 BPMs in the Linac jitter $\leq 0.1 \text{ mm} (1\sigma)$

BPM 14

BPM 15

BPM 16

Summary of the Linac commissioning

Parameters		Goal	Measured
Beam energy (GeV)		1.89	1.89
\mathbf{B}_{aam} annual (\mathbf{m}, \mathbf{A})	e +	40	61
Beam current (mA)	e⁻	500	> 500
Repetition rate (Hz)		50	50
Emittance (1σ) (e +	0.4	0.4
mm·mrad)	e	0.1	0.1
	e +	± 0.50	±0.4
Energy spread (%)	e-	± 0.50	±0.4

2.2 Storage Ri **Beam Diagnosis RF** System **Injection Kickers** Control System **Cryogenics Magnet System** Power Supply **Interaction Region Vacuum System** Installation

RF System

RF Frequency	f _{rf}	499.8 MHz
RF Voltage	V _{rf}	1.5 MV
Q Value		>5×10 ⁸ @2MV
Number of cavities	N _{rfc}	2×1
SR loss per turn @ 1.89 GeV	U _{rf}	123 keV/ring
Total RF loss @ 1.89 GeV	P _b	124 kW/ring
Power of RF transmitters	P _{rf}	2× 250 kW
Number of cavities SR loss per turn @ 1.89 GeV Total RF loss @ 1.89 GeV	U _{rf} P _b	2×1 123 keV/ring 124 kW/ring

Magnet System

	CONTRACTOR OF STREET, STATUS
Magnet type	Number
Dipole (Leff.=1.4135m)	40+1
Dipole (Leff.= 1.2277m)	2
Dipole (Leff.= 1.0339m)	2
Weak dipole (Leff.=1.0321m)	2
Weak dipole (Leff.=0.7453m)	2
Quadrupole	88+2
Old quadrupoles with modified coils	28
160Q quadrupole (Old)	6
Sextupole	72+1
Vertical corrector	48+1
Special vertical corrector	6
Quadrupole of the SR mode	120
Skew quadrupole	4+4
70B dipole (Old)	40+4
Octupole (Old)	2
Total	356

Power Supplies

P.S.	No.	Design Stability	Tested Stability
Q & S	165	1× 10 ⁻⁴	4× 10 ⁻⁵
OQ2,OQ3, IQ2, IQ3	16	1× 10 ⁻⁴	5× 10 ⁻⁵
В	4	1× 10 ⁻⁴	5× 10 ⁻⁵
BH,BV	144	1× 10 ⁻⁴	4× 10 ⁻⁵
T.Q	34	1× 10 ⁻⁴	4× 10 ⁻⁵
T.B	2	1× 10 ⁻⁴	4× 10 ⁻⁵
SC magnets	16	1× 10 ⁻⁴	1× 10 ⁻⁴
Q1a,Q1b,ISPB	3	1× 10 ⁻⁴	1× 10 ⁻⁴

Injection Kickers

Number of Kickers	4
Length	1.9m
Integral field	200Gs·m
Aperture	90mm×38mm
Good field region	±20mm
Field uniformity	±1%
The pulse repetition	50Hz
Stability of current	1%
Waveform	Half-sine wave
Waveform Pulse Width	Half-sine wave 600ns
Pulse Width	600ns

Vacuum System

- The design dynamic vacuum pressure are 8×10⁻⁹ Torr in the arc and 5×10⁻¹⁰ Torr in the IR.
- Antechambers are chosen for both e⁺ and e⁻ rings.
- 80 arc chambers,120 straight section chambers; 175 discrete photon absorbers 180 RF shielded bellows
- TiN coating for e+ ring chambers to reduce SEY

Beam Diagnosis

- Beam Position Monitor
- Bunch Current Monitor
- SR monitor
- DCCT
- Transverse Feedbake
- Tune measurement
- Beam Loss Monitor

Interaction Region

Installation

R		$\Delta x(\mathbf{mm})$	Δy(mm)	Δz (mm)	$\theta_{x}(mr)$	θ _y (mr)	θ _z (mr)	-WIT	
. The	SC magnet	0.15	0.15	0.2	0.1	0.1	0.1		
	В	0.4	0.4	0.3	0.2	0.2	0.1	Par/A	
Sec. 1	Q	0.15	0.15	0.5	0.5	0.5	0.2	2006 4 18	
Preasse	S	0.2	0.2	0.5	0.5	0.5	0.5	ir cushion	
	BV, BH	0.5	0.5	1.0	1.0	1.0	0.5		
	RF	0.15	0.15	0.5	-	-	-		
	Kicker	0.3	0.3	1.0	1.0	1.0	0.5		
	Lambertson	0.3	0.3	1.0	1.0	1.0	0.5	(AP	
Putting the foot screws on floor The installed outer ring in K3 Aligning and adjusting									

BESIII Detector

Y.F.Wang, Inter. Journal of Modern Physics A, Vol.21(2006), 5371-5381.

III PIK IN

BSRF

- Commissioning together with SR beam lines was carried out.
- Beams have been provided for SR users since Dec. 25,

(3) Commissioning

- The operation of the BEPC completed on July 4, 2005, dismount of the old ring started.
- After 16 months' hard work, the storage ring installation was finished in early November 2006 except the cryogenics of the magnets.
- It was decided to install conventional magnets in the IR to start storage ring commissioning and SR operation.
- In the meantime, improvement of the cryogenics system and measurement of the SC magnets are being carried out at the BESIII off-line position.
IR with conventional magnets

Some Results of the SR ring commissioning

Parameters	Unit	Measured	Design
Operation Energy	GeV	2.5	2.5
Injection energy	GeV	1.89	1.89
Circumference	m	241.130	241.127
RF voltage	MV	1.5	1.5~3.0
Tunes $(v_x/v_y/v_s)$		7.269/5.399/ 0.0242	7.270/5.370/ 0.0249
Beam emittance	nm·rad	100	
Bunch number		~100	200-300
Beam current	mA	200	250

The early commissioning

When the first electron beam stored in the ring...

Hardware systems debug

- Power supply re-calibration with a larger current range;
- Misconnection of some corrector power supplies found and amended;
- Cables of the BPM's re-calibrated;
- Offsets of the BPM's were measured with beam based alignment;
- Some "bad" BPM's, judged by 3-button check, were disabled.

Orbit Correction

The orbit correction with transfer functions was performed. The residual rms orbit distortion after correction can be reduced to 0.42mm and 0.27mm on the horizontal and vertical planes, respectively

Twiss parameter measurement

Dispersion function measurement

44

Beam current and lifetime

- Maximum beam current reached 250 mA at 1.55 GeV and 1.89 GeV with no limit indicated.
- By improving the vacuum pressure with the accumulated beam dose, beam lifetime increases smoothly.

Joint commissioning & SR operation

SR user experiments, examples

A structure and function unknown protein

Sm423 – a protein in Serine degradation pathway

Sm424 – a protein in Serine degradation pathway X-ray diffraction of BaRuO3 under high pressure 47

BEPCII Schedule

2004
2005
2006
2007
2008
2009
20

4
Q1
Q2
Q3
Q4
Q1
Q2
Q3</

- The first round SR operation will be ended on Feb. 1, 2007.
- Commissioning for the e- ring, the e+ ring and e+-ecollision will be followed.
- The second round SR operation of one month will be arranged in June.
- The SCQ's tested in the off-line position during the commissioning should be ready for installation in July.
- After the SCQ's are installed, the BEPCII commissioning will be contin-ued.
- It is expected that the luminosity would be high enough for the BESIII detector to start up by end of 2007.

07-9-19

07-8-31 👗 Move BESIII into IR

BEPC/BESIII commissioning

Concluding Remarks

- As a natural extension of the BEPC, the BEPCII is a double ring e⁻-e⁺ collider with design luminosity of 1×10³³cm⁻² s⁻¹ in 1-2.1 GeV and a SR source of 2.5 GeV, 250 mA.
- Significant progress has been made since the project started construction in the beginning of 2004;
- The success of the initial commissioning and early operation encourage us to go ahead;
- There is still a long way to go before taking about the full success.
- The success will of enable us for the future projects, such as CSNS, XFEL and ILC.
- The challenges and physical prospects of the BEPCII call for further cooperation Asia- & World-wide.

Institute of High Energy Physics

Jan. 31, 2007, APAC2007

RRCAT, Indore, India

Image © 2007 NASA © 2007 Europa Technologies

Google

Pointer 41°34'02.82" N 110°38'52.20" I

Streaming ||||||||| 100%

Eve alt 9792.95 mi