Construction of Shanghai Synchrotron Radiation Facility

Zhentang Zhao Shanghai Institute of Applied Physics, CAS, China APAC2007, RRCAT, Indore, Feb. 1, 2007

Outline

Shanghai Synchrotron Radiation Facility
Construction of SSRF Buildings;
Commissioning of SSRF utilities;
Status of the SSRF Machine;
Summary

Overview of the SSRF Project

The Shanghai Synchrotron Radiation Facility (SSRF): is a 3rd generation SR light source based on a 3.5GeV and 432m circumference electron storage ring;

- □ The SSRF site is located in Zhang-Jiang High Tech Park, Shanghai Pudong new development district;
- The SSRF project is founded by Central Government, Shanghai Local Government and Chinese Academy of Sciences; The total project budget is about 150M USD, which not including land and man power costs;
- The project groundbreaking was made on December 25 2004, and the user operation is scheduled to start in April 2009;

The SSRF Site Location

Zhentang Zhao

Layout of the SSRF Campus

Zhentang Zhao

APAC2007, RRCAT, Indore Feb.1, 2007

Zhentang Zhao

Status of the SSRF Buildings

- The SSRF main building's construction is basically completed, which has been opened for machine installation since November 2006;
- The construction of utility buildings and the technical building have been completed and they are already in use;
- The constructions of the SSRF administration building, cafeteria and guesthouse have been completed and they are all in use or operation;

The SSRF Main Building Jan.24, 2007

Zhentang Zhao

海龙的物理研究所

Solid Foundations

- 1000 piles in 0.6m diameter down to 48m underground •
- Slab of 1.45m thick for the storage • ring tunnel and SR experiment hall;

Zhentang Zhao

APAC2007, RRCAT, Indore Feb.1, 2007

-110

Zhentang Zhao

Layout of the SSRF complex

□150MeV Electron Linac

3.5GeV Booster

□3.5GeV Storage Ring

Beam Line and Experimental Stations

Zhentang Zhao

The SSRF Accelerator Complex

- □ The SSRF accelerator complex consists of a 150MeV Linac, a full energy booster and 3.5GeV storage ring
- The energy selected higher than 3GeV for getting higher photon energy;
- High brightness and high flux optimized for photon energy range of 0.1 - 40keV;
- High beam stability @ the long, medium and short term ;
- Top-up injection considered as one of the normal operation mode;

SSRF Design Criteria

- **Optimization goal**
- Storage ring energy: 3.5GeV
- Natural emittance: <4nm-rad</p>
- Circumference: <450m</p>
- Beam current: 200 ~ 300mA,
- Beam lifetime: >10hrs
- Beam size at ID source point: ~ 150 μm x 30 μrad
- Orbit stability: 10% of beam size
- Total straight length: >1/3 Circumference

(with long and standard)

The SSRF Storage Ring

A 20-cell double bend ring lattice structure with a circumference of 432 m and a natural emittance of 3.9nm-rad;

- □ 4 fold configuration with two types of straight sections (16x6.5m and 4x12m);
- One 12m straight for accommodating all injection elements, another one for RF cavities and other 18 for various IDs;
- Reasonable dispersion, beta functions and beam sizes at straight sections;

Main Parameters of the SSRF Storage Ring

	DBA	Low-emittance mode	Normal Mode
Enenrgy	GeV	3.5	3.5
Circonference	m	432	432
Natural Emittance	nm⋅ rad	3.9	11. 2
Current: Multi-bunch (Single)	mA	200~300(5)	200~300(5)
Number of Cells		20/4	20/4
Straights: Length×Number	m	12×4、6.5×16	12×4、6.5×16
$\beta_x/\beta_y/\eta_x$ in middle of 12m straight	m	10.0/6.0/0.15	10.0/6.0/0.0*
$\beta_x/\beta_y/\eta_x$ in middle of 6.5m straight	m	3.6/2.5/0.10	3.6/2.5/0.0*
Betatron Tune Q _x /Q _y		22.22/11.32	22.22/11.32
Chromaticity ξ _x /ξ _y		-56/-19	-56/-19
RF Voltage	MV	4.0~6.0	4.0~6.0
Energy Loss Per Turn (Dipole only)	MeV	1.448	1.448
Max beam power	kW	~600	~600

Zhentang Zhao

SSRF Beam Sizes at Source Points

Source Point	σ _x (μm)	σ _x ΄ (μrad)	σ _y (μm)	σ _y ΄ (μrad)
Standard Straight (6.5m)	158	33	9.9	3.95
Long Straight (12.0m)	247	20	15	2.55
1°@upstream of SS	70	114	22	1.97
3.1°@upstream of SS	53	94	22	1.97
1°@upstream of LS	77	116	23	1.79
3.1°@upstream of LS	56	96	23	1.79

E=3.5 GeV, I=300 mA, ε =3.9 nm·rad, Emittance coupling = 1%

Zhentang Zhao

Status of the SSRF Storage Ring

Equipment manufacture

- Prototypes and first products have been manufactured and tested up to their specifications;
- Main equipment, such as a magnets, vacuum chamber, RF transmitters, liquid helium refrigerator, girders, power supplies and etc., are delivered to the SSRF site or constructed on schedule;
- □Installation and integration
- A lab test installation of a storage ring cell has been carried out to validate the engineering design;
- A on site test installation of a complete ring cell in the tunnel has been carried out to check the installations;

Zhentang Zhao

APAC2007, RRCAT, Indore Feb.1, 2007

Zhentang Zhao

Status of the SSRF Storage Ring

□ First Installation of a ring cell

- First installation of a mechanical ring cell in the tunnel has been carried out last week to validate installation procedures, techniques, man power and schedule;
- First installation of a utility sector in the ring tunnel is being carried out to verify the piping and the cabling;
- First installation of a electrical sector in the ring inner technical corridor is being carried out to finalize the engineering design and electrical installation tech;

Status of the SSRF Storage Ring

□Installation of system equipment

- Refrigerator, RF transmitters, waveguide system are being installed and tested in the RF hall of the SSRF main Building;
- Power supplies will be installed from August 2007;
- Control and beam instrumentation equipment, PPS and MPS systems, are prepared for installations;
- The installation in Central control room and computer server room will start in May 2007;

The SSRF Linac

A dedicated 150MeV Linac for top-up operation, consisting of four 2998MHz/3m long accelerating sections, a fundamental buncher and a subharmonic buncher;

Frequency of 2998MHz chosen to have harmonic relation with the storage ring RF frequency;

With Single and multi bunch operation modes;

Layout of the SSRF Linac

Znentang Znao

Main Parameters of the SSRF Linac

Nominal energy(MeV)	150	
Pulse length: Single/multi-bunch (ns)	1/ 200	
Beam charge Single/multi-bunch (nC)	1/3	
Pulse to pulse energy stability (rms)	0.5%	
Relative energy spread (rms)	0.5%	
Normalized Emittance (mm·mrad)	< 50	
Frequency (MHz)	2997.924	
Repetition Rate (Hz)	1~10	

Status of the SSRF Linac

Almost all of the linac components have be delivered to the SSRF site for acceptance and installation;

- The linac installation started in Nov. 2006 and will be finished at end of March;
- The four accelerating sections, two triplets and one bending magnet, two Farady beam dumps and etc. have been installed and aligned; two modulators and two klystrons have been integrated and being tested;
- The linac commissioning is expected to start in the coming April;

APAC2007, RRCAT, Indore Feb.1, 2007

The SSRF Booster

□ A full energy booster optimized for top-up injection;

- Two fold Lattice configuration to accommodating 28 FODO cells with 8 missing dipole magnets;
- Extraction beam emittance designed at about 100 nm-rad for getting a clean top-up operation;
- □ A circumference of 180m and a injection energy of 150MeV;
- □ Repeat rates up to 2Hz;

Main Parameters of the SSRF Booster

Injection energy	GeV	0.15		
Extraction energy	GeV	3.5		
Beam Current Single/Multi bunch	mA	1.6/15		
Circumference	m	180		
Cell number/Super periods		28/2		
Energy loss per turn at 3.5 GeV	MeV	0.915		
Natural emittance at 3.5 GeV		104	94.6	
Betatron tune, v_H / v_V		8.181/5.229	8.416/5.389	
Nature Momentum spread		7.799×10 ⁻⁴	7.802×10-4	
Momentum compaction, α_{P}		0.01849	0.0176	
Damping time, $\tau_{H,V,L}$	mS	4.8/4.6/2.3	4.8/4.6/2.3	
RF Frequency	MHz	499.65		
Required RF voltage V _{RF}	MV	1.8		

Status of the SSRF Booster

- Most of the booster components are under fabrication on schedule, part of them have been delivered to the SSRF site for acceptance testing;
- A lab test installation of a booster cell has been carried out to verify the engineering design, cabling and piping as well as installation techniques;
- The pre-assembly and pre-align of the booster magnet cell are being performed, which is expected to be installed from May 2007;
- The booster commissioning is scheduled in the coming October;

Booster Components

APAC2007, RRCAT, Indore Feb.1, 2007

Zhentang Zhao

APAC2007, RRCAT, Indore Feb.1, 2007

The First SSRF Beamlines

- □ Macromolecular Crystallography (In-Vac Und.)
- **High-Resolution Diffraction**
- □X-ray Absorption Fine Structure Spectroscopy (W.)
- **Hard X-ray Micro-focus and Application (In-Vac Und)**
- □ X-ray Imaging and Biomedical Application (W)
- **X-ray Scattering**
- □ Soft X-ray Microscopy (Und.)
- **X**-ray Interference Lithography (SINAP)

The SSRF Construction Schedule

Dec. 2004 ~ Sept. 2006: Building construction

- □ Jun. 2005 ~ Mar. 2008: Accelerator equipment and components manufacture and assembly
- □ Dec. 2005 ~Dec. 2008: Beamline construction and assembly
- □ Apr. 2007 ~ Jul. 2007: Linac commissioning
- **Oct. 2007 ~ Mar. 2008: Booster commissioning**
- □ Apr. 2008 ~ Oct. 2008: Storage ring commissioning
- □Nov. 2008 ~ Mar. 2009: Beamline commissioning
- □ Apr. 2009: The SSRF operation begins

Summary

- □ Construction of the SSRF project is progressing on schedule towards the machine commissioning;
- □ The SSRF equipment and components are still being manufactured at industries;
- The accelerator installation started with the SSRF linac in November 2006 is going well;
- It is expected to start the linac commissiong in April 2007, the booster commissioning in October 2007 and the storage ring commissioning in April 2008;
- **The user operation is scheduled to start in April 2009.**

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

斜谷海上海应用物理研究而

APAC2007, RRCAT, Indore Feb.1, 2007

Zhentang Zhao