APAC2007

Use of Microbeam at JAEA Takasaki

Mitsuhiro FUKUDA

Research Center for Nuclear Physics(RCNP) Osaka University

Authors

Takasaki Advanced Radiation Research Institute Japan Atomic Energy Agency

Tomihiro Kamiya, Masakazu Oikawa, Takahiro Satoh, Takuro Sakai, Satoshi Kurashima, Nobumasa Miyawaki, Susumu Okumura, Hirotsugu Kashiwagi, Watalu Yokota

Research Center for Nuclear Physics (RCNP) Osaka University

Mitsuhiro Fukuda, Kichiji Hatanaka, Tetsuhiko Yorita

Contents

- 1. Microbeam Production Systems at TIARA Facility
- 2. Applications of the Microbeams
- 3. Development of a New High-Energy Heavy Ion Microbeam System
- 4. Generation of High Quality Beams by Upgrading Cyclotrons
- 5. Summary

1. Microbeam Production Systems at TIARA Facility

Takasaki Ion accelerators for Advanced Radiation Application

Production of Microbeam

Heavy Ion Microbeam Line

Light Ion Microbeam Line

Spot Size of Light Ion Microbeam

Secondary electron mapping to measure the beam spot size

2. Applications of the Microbeams

In-air Micro-PIXE Analysis Using 2 MeV Proton Microbeam

Application of several-hundred-MeV heavy ion Microbeam

Collimation of Beam Beam Collimator Cell Driving a sample stage **: 5 ~ 10** μ**m** Beam spot size Single-ion hit rate : several hits/min

Elucidation of Cellular Radiation Response

- Investigation of cell-to-cell communications such as "bystander effects"
- Analysis of cellular spatial sensitivity, interaction of damages, dynamics of cellular repair and intra-cellular process like apoptosis

3. Development of a New High-Energy Heavy Ion Microbeam System

Preliminary Result

Observation of beam spot on a plastic scintillator

High speed single-ion hit with targeting accuracy less than 1µm

(achieved)

ore than 600 hits / mil (under development)

Upgrade of AVF Cyclotron

-Flattop Acceleration System Energy Spread ∆E/E = 0.01 ~ 0.05 %

-Temperature Control System Magnetic Field Stability : △B/B < 0.001%

TIARA Cyclotron Facility

Microbeam Applications

Materials, Medical, Biological Sciences

Ultrahigh Resolution Experiment

Nuclear Physics

Development of Flattop Acceleration System

Stabilization of Cyclotron Magnet Field by Controlling Cooling Water Temperature

Temperature increase caused by heat from coils : ⊿t_{yoke} ~5 °C

```
Magnetic field stability :

⊿B/B ~ 3×10<sup>-4</sup>
```

Improved

 Insertion of water cooled plate for heat shielding

⊿t_{yoke} ~ 0.1 °C
 Stabilization of cooling water temperature for coils

 $\Delta t_{coolant} \sim 0.5 \ ^{\circ}C$

⊿B/B ~ 1×10⁻⁵

Calculated temperature distribution (a) without plate (b) with plate

High Quality Beam at RCNP Cyclotron Facility

Energy Resolution ∆E/E ~ 0.005% Ring Cyclotron K=400 MeV ∆E/E ~ 0.01% Since 1992

Stability of Magnetic Field ∆B/B < 0.001%

AVF Cyclotron K=140 MeV ∆E/E < 0.1% Since 1973

Ultrahigh Energy Resolution Experiment Using the High Quality Beam

Lateral and Angular dispersion matching between WS-beam line and Grand RAIDEN

Comparison of resolutions

Ordinary resolution

(p,n) measurement

Ultrahigh resolution

(³He,t) measurement

RCNP

2001

⁵⁸Ni(³He,t)

 $\Delta E = 35 \text{keV}$

E = 140 MeV/u

WS Beam Line and Two-Arm Spectrometers at RCNP

5. Summary

Microbeams available at TIARA, JAEA Takasaki

Microbeam	Accelerator	∆E/E	lon	Spot size	Applications
Light ion	3MV Single- ended	10 ⁻⁵	2~3 MeV H, He	0.25 μm	 Micro-PIXE analysis PBW (Proton Beam Writing)
Heavy ion	3MV Tandem	10-4	H ~ Au	<1 µm	- Analysis of single event phenomena in semiconductor devices
High-Energy Heavy-ion	K110 AVF Cyclotron	>10 ⁻³ (original)	H ~ Xe	5 ~ 10 μm (Collimation)	- Elucidation of Irradiation
		10 ⁻⁴ (new)	260 MeV Ne	< 1 µm (Focussing)	effects to living cells