
Status of FFAG developments

Shinji Machida ASTeC/CCLRC/RAL 29 January, 2007 <u>http://www.astec.ac.uk/intbeams/users</u> /machida/proc/apac07/machida_20070129.pdf & ppt

Contents

- Neutrino factory and FFAG
- FFAG basics
- Development as proton driver
- Development as muon accelerator
- Accelerator physics issues
- Neutrino factory and FFAG: beyond

Neutrino factory and FFAG (1) *ILC is not only the project of high energy physics*

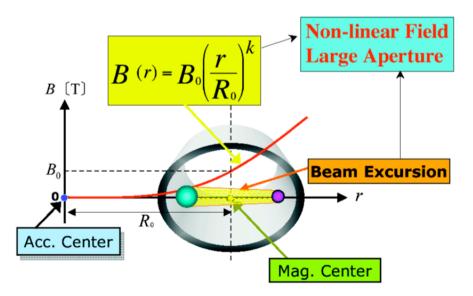
Neutrino factory and FFAG (2) *Muon is produced as a tertiary particle*

- Muon production requires high intensity proton accelerator as a primary particle source.
- Intensity is about 4 MW.
 - ISIS is 0.2 MW.
 - J-PARC will be 0.6 MW.
 - SNS will be 1.4 MW.
- Energy is about 10 GeV.
- Short pulsed beam.

Neutrino factory and FFAG (3) Life time of muon is 2.2 µs at rest

- Acceleration has to be as quick as possible.
- "rapid" cycling synchrotron such as ISIS takes 10 ms.
- Muon accelerator from 0.2 to 20 (50) GeV in ~1 μ s.

Neutrino factory and FFAG (4) *Muon is produced as a tertiary particle*


- Momentum spread is huge +-100%.
- Transverse emittance is huge, $30,000 \pi$ mm mrad (normalized).
 - Acceptance of J-PARC is +-1% and 300 π mm mrad.

FFAG seems the best machine candidate for Neutrino Factory.

why?

What is FFAG? (1) *Difference from synchrotron*

- FFAG is "Fixed Field Alternating Gradient".
 - People usually refer to FFAG focusing accelerator as "FFAG" although FFAG only specifies focusing scheme.
- Differences from a synchrotron is
 - Magnetic field is fixed, not ramped like a synchrotron.
 - Field profile is not linear.

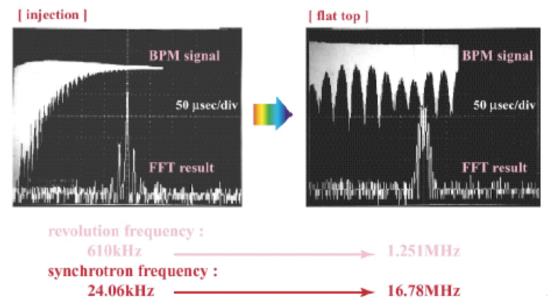
What is FFAG? (2) *Difference from cyclotron*

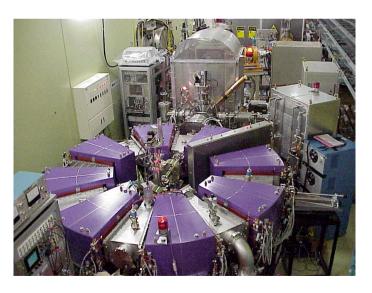
- FFAG looks similar to an azimuthal varying field (AVF) cyclotron, especially when the magnet edge has spiral shape.
 - Some people actually say that FFAG is one variety of a cyclotron.
- However, magnet field profile are shaped to keep the betatron tune constant and orbit shift (or excursion) small as possible, whereas a cyclotron as definition keep the revolution frequency constant called the isochronism.
- Since the revolution frequency changes, a beam has a pulse structure unlike continuous beam of cyclotron and similar to synchrocyclotron.

What is FFAG? (3) *High beam power machine*

- Repetition rate can be higher because no need to ramp the magnets.
- Particles per bunch can be the same or larger because same magnitude of focusing in transverse as well as longitudinal is maintained and aperture (in horizontal) is larger.
- Output energy can be higher because magnet size is smaller.

Beam power =	Repetition rate x Particles per bunch	(> synchrotron) (~ synchrotron)	
	x Output energy	(> cyclotron)	9

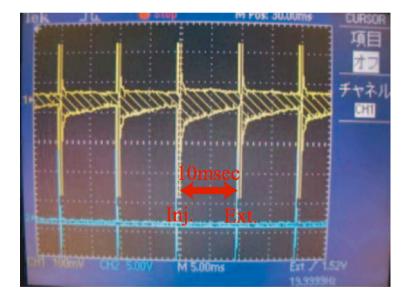

What is FFAG? (4) *Fast acceleration with large beam*


- Acceleration time can be quick if there is enough rf voltage like linac.
- Multiple use of rf voltage is cost effective like circular accelerator.
- Large transverse aperture and 100% momentum acceptance (injection and extraction momentum particles can stay at the same time) give enough room for a tertiary beam such as a muon beam.

Status

Developments as a proton machine (1) *Demonstration at KEK, opening a new era*

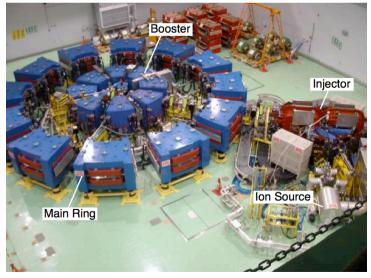
- 500 keV proton machine to prove a principle
 - Establish design procedure,
 - Confirm large aperture,
 - rf cavity with Magnetic Alloy and 1 kHz operation,
 - Proposal of many applications,
 - Create a community.



Developments as a proton machine (2) Prototype of medical machine

• 150 MeV proton machine to show its potential.

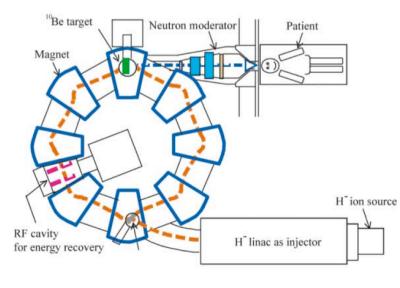
100 Hz operation


Beam extraction with 90% efficiency

Developments as a proton machine (3) Accelerator driven sub-critical reactor at KURRI

- Accelerator construction itself is not its final goal.
 - Take data of effective multiplication factor of 20 to 150 MeV.
- Three cascade FFAG to 150 MeV.
 - Variable output energy from 20 to 150 MeV.

Commissioning of the final machine is continued.


32 trim coils to change field index and output momentum.

Developments as a proton machine (4) Compact neutron source

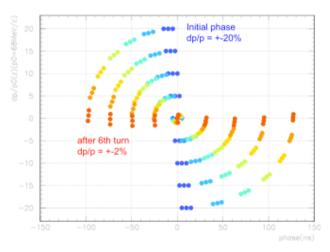
- ERIT: Energy recovery internal target.
- Be target for neutron production and for ionization "cooling".
- Comparable neutron yields as reactor.

Schematic view of ERIT-FFAG

Emittance vs. turn number

Developments as a proton machine (5) Summary

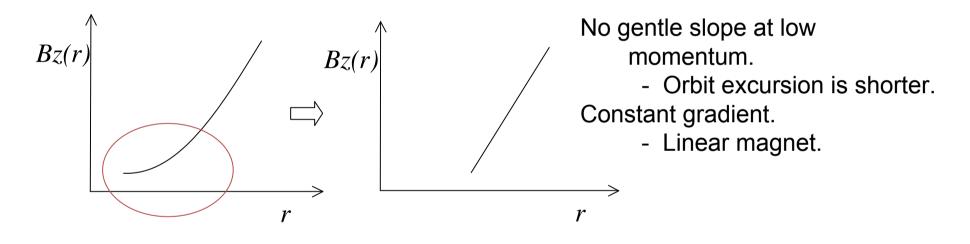
- Repetition rate is much higher than the conventional accelerator.
- Proof of high beam power will come soon.


Developments as a muon machine (1) *Phase rotation of muon beams*

- Phase rotation to reduce momentum spread.
- No net acceleration, but huge transverse acceptance.

Table 1: Anticipated PRISM beam characteristics		
Design goal		
$10^{11} - 10^{12} \mu^{\pm}$ /sec		
20 MeV		
$\pm (0.5-1.0)~{ m MeV}$		
100 - 1000 Hz		
$< 10^{-18}$		

	Table 2:	Parameters of PRISM-FFAG	arameters of PRISM-FFAG	
-	-			_


No. of sectors	10
Magnet type	Radial sector
	DFD triplet
	C-shaped
Field index (k-value)	4.6 (variable 4.4-5.2)
F/D ratio	6.2 (variable 4-8)
Opening angle	F/2 : 2.2deg.
	D : 1.1deg.
Aperture	H 100cm x V 30cm
Average radius	6.5m for 68MeV/c
Tune	horizontal : 2.71
	vertical: 1.52

Developments as a muon machine (2) Making a magnet smaller

- The final energy of muon is 20 to 50 GeV.
- Magnet aperture should be as small as possible.

• Field gradient does not scale to momentum. Tune change as a beam is accelerated.

Developments as a muon machine (3) Resonance crossing

• Tune change and crosses integer and half-integer resonances.

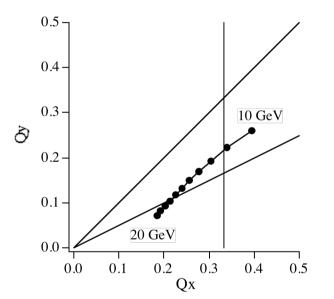
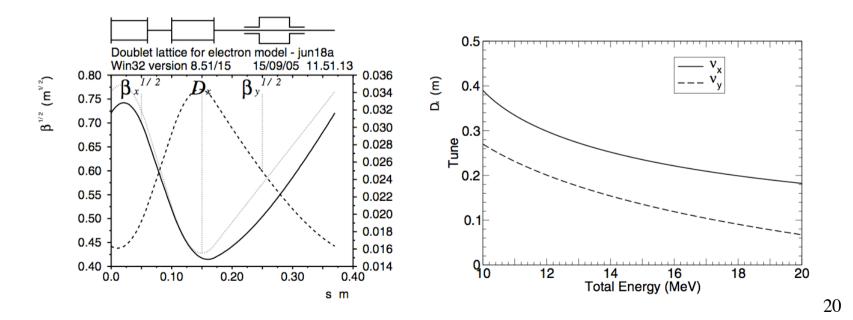
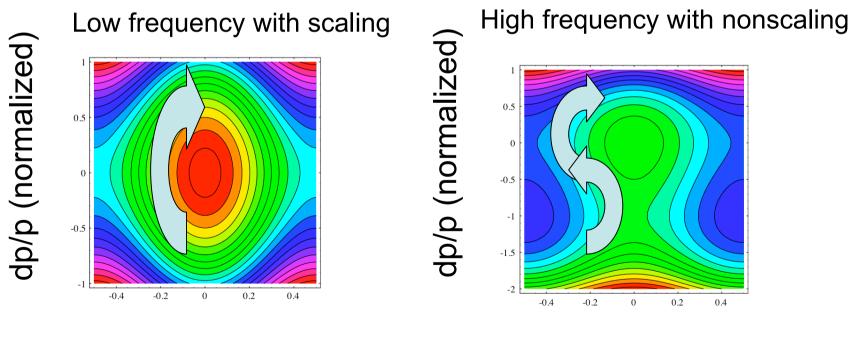



Figure shows tune per cell. With 84 cells per ring, the integer part of total tune changes from 33 to 15.

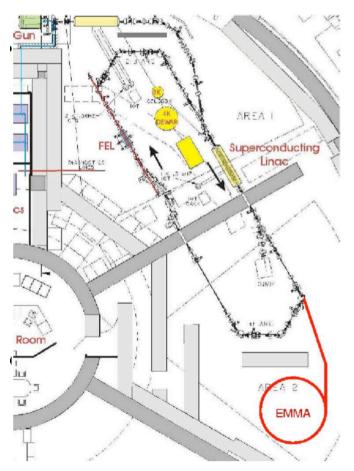
• It may not be a problem if acceleration is very fast.


Developments as a muon machine (4) New idea: nonscaling FFAG

- Nonscaling FFAG uses only dipole and quadrupole, namely synchrotron without ramping magnets.
- Conventional one is called "scaling" FFAG.
- Make the dispersion function as small as possible to squeeze beam orbit shift and magnet aperture.

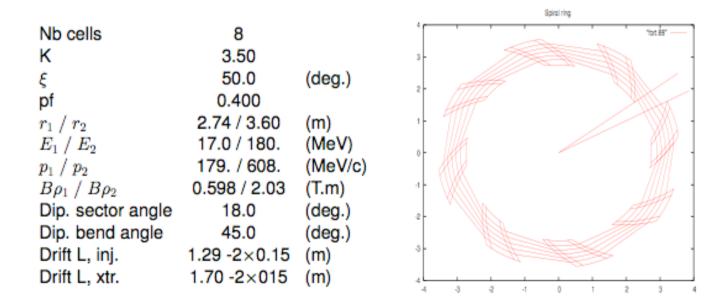
Developments as a muon machine (5) acceleration with constant rf frequency

- rf frequency cannot be modulated in 10 to 20 turns.
- Fix the rf frequency and accelerate a beam either
 - (1) in a huge rf bucket, or
 - (2) outside buckets.


Phase (1/2 pi)

Phase (1/2 pi) ²¹

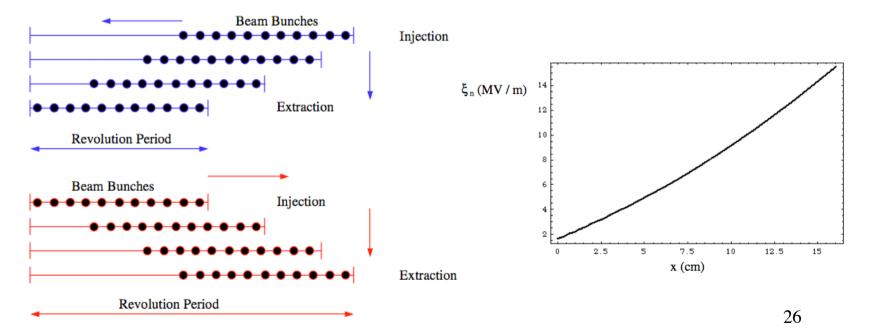
Developments as a muon machine (6) *Electron model: EMMA*


- Construction of an electron model of nonscaling FFAG will start at Daresbury Laboratory soon.
 - Acceleration outside buckets
 - Resonance crossing
 - Large aperture

Energy:	10 to 20 MeV
Acceptance:	$3,000 \ \pi \ \text{mm} \ \text{mrad}$
Circumference:	16 m
# of cell:	42
# of turn:	12
rf voltage:	~30 kV/cell
rf frequency:	1.3 GHz

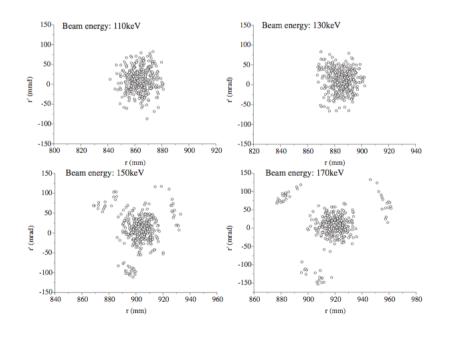
Developments as a muon machine (7) *Another FFAG project : RACCAM*

- LPSC starts RACCAM project
 - Participate to the on-going international collaboration.
 - Design and build a prototype of FFAG magnet.
 - Develop the concepts and show the feasibility of the application such as FFAG beams to anti-cancer hadron therapy.

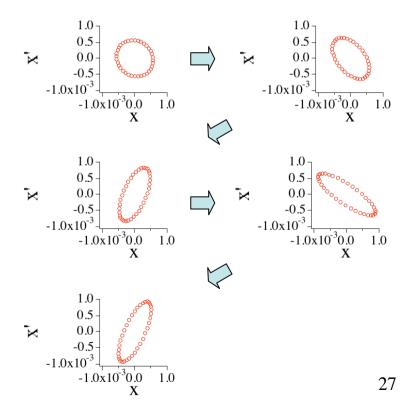

Developments as a muon machine (8) Summary

- Development as a muon machine is a bit behind that of a proton machine.
- Construction projects have been started and experimental results will come soon.

Accelerator physics issues


Accelerator physics issues (1) Harmonic number jump

- Continuous operation with constant rf frequency is possible (A. G. Ruggiero, Phys. Rev. ST 100101, 2006).
- A bunch is captured in a bucket with different harmonic number turn by turn.
- Energy gain has to be adjusted in radial direction.

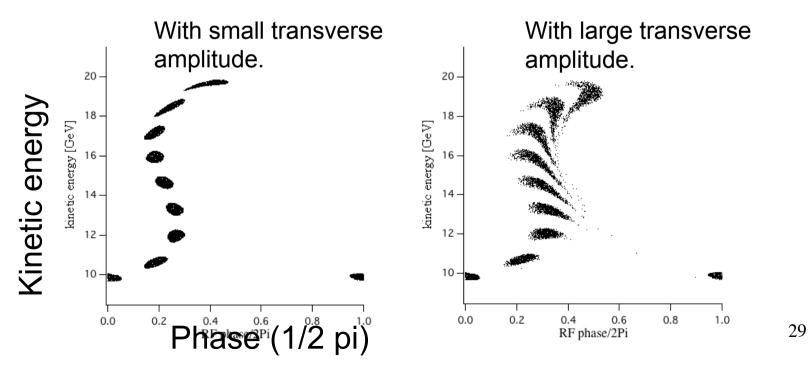


Accelerator physics issues (2) Resonance crossing

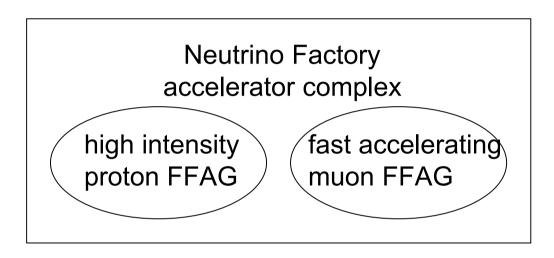
- Nonlinear resonance in scaling FFAG.
 - Particle trapping model (Aiba, Phys. Rev. ST. 084001, 2006).
 - Adiabatic parameter ~7.



- Linear resonance in nonscaling FFAG.
 - Beam is tumbling due to gradient mismatch.


Accelerator physics issues (3) Crossing of space charge induced resonance

- A beam cannot cross a resonance excited by its self space charge force (S. Y. Lee, Phys. Rev. Lett. 97, 2006).
- $q_{x,y}$ (cell tune)=0.25 is an intrinsic resonance of $4q_{x,y}$ =1.


Accelerator physics issues (4) ToF depends on transverse amplitude

- When particles are accelerated outside buckets, energy gain becomes a function of transverse amplitude (Machida, Phys. Rev. ST 100402, 2006).
- Chromaticity control reduces the effects, but also reduction of aperture (Berg, Nucl. Instr. Meth., 2006).

Summary

Neutrino factory and FFAG and beyond

- Medical machine
- Transmutation/ Energy breeder
- Compact neutron source

- Experimental apparatus (PRISM)
- Acceleration of unstable nuclei
- New optics
- New way of acceleration
- Understanding resonance
- Code development