

R&D on Vacuum Components for High Current Accelerators

Y. Suétsugu on behalf of Vacuum Group, KEK B-factory

Contents

Introduction

R&D for

Beam duct

Inner Coating with Low SEY

- Bellows and Gate Valve
- Connection Flange
- Movable Mask (Collimator)
- Summary & Future Plan

2007/01/29-2/2

APAC07 Indor, India

Introduction

Future accelerators, such as Super B-factories, operate with a beam current of several amperes, and a bunch lengths of a few mm, in order to achieve a high luminosity, >1×10³⁶ cm⁻²s⁻¹, for example.

 These beam parameters impose severe challenges to the vacuum system.

- Beam duct has to manage the synchrotron radiation (SR) power density up to several tens Wmm⁻².
- Vacuum components should have low beam impedance, and stand up against the intense higher order modes (HOM).
- Suppression of the electron cloud instability (ECI) is a serious problem in a positron ring.

Development of vacuum components to satisfy the conditions are essential keys to realize the future accelerators.

Introduction

To meet the demands, R&D on vacuum components has been progressing at KEK, using intense beams of the KEK B-factory ring (KEKB).

- Low Energy Ring (LER): 3.5 GeV, Max.1.8A (1389 bunches)
- High Energy Ring (HER): 8.0 GeV, Max.1.4 A (1389 bunches)
- Studied Components:
 - Copper beam ducts with one or two ante-chambers.
 - Inner surfaces with a low secondary electron yield (SEY).
 - Bellows chambers and gate valves with high thermal strength and low beam impedance.
 - Special connection flange with no gap at the connection point.
 - Novel movable mask (collimator) with low beam impedance.
- The results of the R&D are reviewed here.

2007/01/29-2/2

APAC07 Indor, India

Beam duct with ante-chamber (2003 ~)

- Ante-chamber = additional chamber
- Effective to reduce photoelectrons in the beam channel
- Also effective to dilute the power density of SR

Use copper

Copper ducts with an antechamber for arc sections
 Manufacturing properties were investigated. → No problem
 Installed at an arc section of the KEKB positron ring (2003).
 Reduction of photoelectrons was confirmed.

- Copper duct with two ante-chambers (2005~)
 - Installed into LER wiggler section.
 - Reduction of photoelectrons was confirmed again from the measured electron number.
 - No problem up to 1.7 A.

2007/01/29-2/2

APAC07 Indor, India

Survey of surfaces with a low SEY (2004~)

- Essential cure against the formation of electron cloud at relatively high current
- Test chambers with NEG and TiN coatings were installed in the KEKB positron ring (ϕ 94).
- Electron numbers were measured under the same condition, and compared with each other.
- Photoelectron yield (η_e) and the maximum secondary electron yield (δ_{max}) were estimated using a simulation of the electron current.

Experiment at arc section

- Test chambers were installed at an arc section.
- Direct SR of 6.4x10¹⁴ photons/s /m/mA was irradiated at side wall.
 - Realistic condition
- Incident angle ~8 mrad.

Measured electron current (*I_e*) for Cu, TiN, NEG at the same beam condition

Electron dose >10mC/mm²: After aging

- *I*_e for NEG coating is almost the same as that of Cu, except for high current.
- *I*_e for TiN coating is clearly lower than those for Cu and NEG (by a factor of 2).

 TiN seems better from a view point of small electron number in the beam duct.

Estimated η_{e} and δ_{max} (arc section) by simulation

TiN seems better from a view point of low δ_{max} and small η_e .

- δ_{max} of NEG is lower than Cu, but not so clear due to high η_e .
- δ_{max} of Cu, NEG and TiN is near to those measured in laboratory after sufficient electron bombardment (after aging).

2007/01/29-2/2

APAC07 Indor, India

Measurement at a straight section (2006~)
 Low direct SR : 3.3x10¹² photons/s/m/mA (<1/100 of arc)
 Eliminate the effect of SR
 Copper, TiN coating and

NEG coating

Incident angle = 0.6 mrad

12

Measured electron current

- Electron density for TiN coating is about 1/3 ~ 1/4 of that of copper.
- Electron density for NEG coating is about 2/3~1/2 of that of copper. The difference between Cu and NEG became clear. ←Small effect of SR.
- The curves can be reproduced by similar η_e and δ_{max} .
- TiN is still better from the view point of low SEY.

Combination with ante-chambers

- Comb-type RF-shield (2003~)
 - Proposed at KEK
- Nested teeth instead of fingers
 - High thermal strength
 - Small leakage of HOM (TEmode)
 - <1/10 of finger type</p>
 - Low beam impedance
 - ~1/2 of finger type
 - Applicable to various apert Finger type
 - Limited offset
 - Complicated structure

First application to circular bellows (2003~)

- *ϕ*94, L=160 mm
- Temperature rise decreases to 1/6
- No problem up to 1.7 A

Bellows for a beam duct with ante-chambers (2005~)

- Easy to apply to a complicated cross section.
- No problem up to 1.7 A.
- Inside was checked this winter, and no damage was found.

KEKB uest for CPV

- Circular gate valves (2005~)
 - Simplified structure = No sliding point
 - Collaboration with VAT Vakuumventile AG.
 - Temperature rise of body decreased to 1/3.

Connection Flange

Important components

- Large number → Impedance
- High current \rightarrow RF-bridge
- MO (Matsumot-Ohtsuka) Flange (2004~)
 - Seal a vacuum at only the inner surface.
 - Vacuum seal doubles as RF bridge.
 - No gap and step at the inner surface.
 - Can follow the complicated cross section.
 - Bakable

Rectangular model (for waveguide)

Connection Flange

Application to bellows chambers and beam ducts (2005~)

- Vacuum was sealed with a fastening torque of <18 Nm.</p>
- No problem up to 1.7 A (8 flanges)
- Applied to new test chambers (28 flanges), and will be tested this year.

MO flange for beam duct

MO flange for bellows chamber

Movable mask (collimator) (2003~) Indispensable to reduce background of detector Problems for high current operation High Impedance ($k = 1 \text{ V pC}^{-1} @ \sigma_7 = 3 \text{ mm}$) Damage of head due to direct hitting of bunches Basically use the same configuration to present type, but the mask chamber should be changed. **Bellows Chamber** Ver.4 for KEKB Mask Chamber **Bellows Chamber** Beam Mask Head APAC07 Indor. India 2007/01/29-2/2

- Proposal of a new mask chamber
 - Ceramic support
 - Little interference with beam
 - k decreased to ¼ of Ver.4
 - No problem of CBI
 - With thin metal coating to avoid charge up of head
 - Ceramic head
 - Little damage by beam
 - With HOM absorber (SiC)
 - Absorb trapped modes

APAC07 Indor, India

 Trial Model for beam test
 Vertical mask for LER will be installed this winter.
 Beam test will start from

February.

Summary and Future Plan

R&D of various vacuum components to adaptable to high current accelerators are proceeding using KEKB.

- Beam duct with ante-chambers Inner coatings with low SEY, Bellows chambers and gate valves, Connection flanges, and Movable masks
- R&D is steadily proceeding step by step.
- Next step:
 - Replacement of the present circular beam ducts at a wiggler section (~30m) by that with ante-chambers with TiN coating [this summer].
 - Beam test of a new movable mask.
 - R&D of a clearing electrode for ECI, as an application of the new movable mask (ceramics support).

23

2007/01/29-2/2

APAC07 Indor, India

- Measurement of electron number

 - Compared with a circular simple duct
 - Reduction <1/100 for low beam currents (<100 mA) :</p>
 - Photoelectron is well suppressed.
 - Reduction by a factor of 4 for high currents (>1500 mA):
 Secondary electron is important. Surface with low SEY

Estimation of the max. SEY (δ_{max}) and the photoelectron yield (η_e) of Cu, NEG and TiN coating, by a simulation.
 Make use of the behavior of measured electron currents.

Simulation Method:

- "Macro" electrons (≤10⁴ electrons) are traced from the emission, and the number of electrons entering the electron monitor) are counted.
- Curve fitting to the measured electron current.

Temperature of corrugation

1600

APAC07 Indor, India

Racetrack Bellows (2005~)

- 150 x 50 mm racetrack
- No problem up to 1.4 A

Type Com

800

atrack 150x501

 Temperature rise decreased to 1/3 of that of the conventional bellows.

1000

HER Beam Current [mA]

2007/01/29-2/2

emperature of Corrugation

60

te e

60

40

36

30

26

20

Connection Flange

Trial models (only flanges)

Bench test (2004~)

Stainless-steel flange and copper gasket (annealed)

- 180x340 for ϕ 94 antechamber, 28 M8-bolts along aperture.
- Vacuum seal at a torque of \leq 18Nm.
- No problem after baking (200°C)

2007/01/29-2/2

31

Calculation of longitudinal Impedances (R_s) and Q

Calculation of Loss factor

- Loss factor decreases as increasing the resistivity of coating on support.
- Loss factor is about 1/4 of the present Ver.4 mask at σ_z = 4mm, when the coating is 1µm titanium, for example.

Bench test using a test model

- An atmosphere version was manufactured to check the calculation, and to see the manufacturing property.
- Measured behavior of trapped modes were well consistent with the calculated one.

