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Abstract 
It was observed that a bunch-length shrunk with 

acceleration in the Induction Synchrotron (IS) 
experiment, where a single proton-bunch injected from 
the 500 MeV Booster was accelerated to 6 GeV in the 
KEK-PS.  A novel technique capable of quantitatively 
predicting the adiabatic phenomenon of bunch 
shortening has been developed, based on a hypothesis 
that the particle oscillation amplitude varies inversely 
proportional to the square root of its oscillation 
frequency.  The experimental result and analytical 
prediction is in good agreement with each other. 

INTRODUCTION 
  The induction acceleration experiment was carried out 
using the KEK 12 GeV proton synchrotron (12GeV-PS) 
in a series of experiments to demonstrate a proof of 
principle of the IS [1], the schematics of which is shown 
in Fig. 1.  Details of the experiments have been described 
in the literatures [2,3,4].   
  A specific property of the functional separation of 
acceleration and confinement in the IS allows us to 
control the beam size through the entire period of 
acceleration.  However, the accelerated beam bunch is 
subjected to adiabatic damping, as seen in the 
conventional RF synchrotron.  It is quite important to 
know how the bunch size evolves through the entire 
acceleration in the IS and what factors dominantly 
determine the bunch size.  A theoretical approach to 
predict the temporal evolution of the bunch size is 
developed.  After the approach is carefully justified by 
comparing with computer simulations, the theoretical 
prediction is compared with the experimental results.  
Last we will discuss how this theoretical approach can 
provide a useful tool to estimate a temporal evolution of 
the bunch size associated with adiabatic changes in the 
external parameters, such as the barrier voltage 
amplitude and a time-interval between barrier voltages. 

 
Figure 1: Schematic view of the Induction Synchrotron 

 
 

EXPERIMENTAL RESULTS 
  The bunch profile which was monitored by the wall 
current monitor, was recorded every 33 msec from the 
injection to the end of acceleration.  Experimental results 
through the entire acceleration period are plotted for 
typical four shots in Fig. 3, where the bunch size is 
defined as a width measured at 5% of the peak height.  
From Fig. 3, we can clearly identify four regions:  At the 
injection (I), the bunch width is 100 nsec but it quickly 
increases to ~ 400 nsec because of mismatching to the 
barrier bucket [3]. Tumbling of the bunch in the phase 
space and the succeeding filamentation are apparent 
there, leading to a long bunch width.  In the remaining 
minimal field region (II) before acceleration, the bunch 
size is almost constant. This implies good matching with 
the barrier bucket shape throughout the region.  The 
initial acceleration region (III) is characterized by serious 
beam loss as shown in Fig. 2. Quick shrinking of the 
beam size is caused by the beam loss in addition to 
damping associated with acceleration.  The reason of 
beam loss is not fully understood, although it is 
speculated that the control of the trigger pulse density is 
not enough at this transient region.  There is no beam 
loss in the constant acceleration region (IV).  A steady 
state damping is clear.  Near the end of acceleration 
region, the bunch width is almost constant. We will 
discuss more about this region hereafter. 

 
Figure 2: Experimental results. From top to bottom, ΔR 
signal, beam current, acceleration voltage pulses, and 
bunch signal 

THEORY 
To develop the theory, we set a hypothesis that the 

phase oscillation evolves such that the instantaneous 
oscillation amplitude is inversely proportional to the 
square root of the phase oscillation frequency.  This 
hypothesis is originated from an analogy of the WKB 
solution for a harmonic oscillator with slowly varying 
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Figure 3: Evolution of the bunch length in time. 

 
parameters.  Note that the phase motion of a particle 
trapped in the barrier voltages strongly depends on the 
oscillation amplitude; in this sense, the motion is a 
nonlinear motion.  The hypothesis has been justified by 
comparing the prediction from the hypothesis with 
computer simulations assuming completely same 
parameters to characterize the motion in reference [5].  
Here, an analytical formula to give the temporal 
evolution of the oscillation amplitude, which represents 
an outer bunch-edge, is briefly introduced below. 
  For simplicity, the induction cells for acceleration and 
confinement are represented by a single device in the 
present acceleration model.  Two dynamical variables of 
energy E and phase φ are used.  The former is the total 
energy of a particle.  The latter is defined by ωst, where 
ωs is the angular revolution frequency of the ideal 
particle (synchronous particle) and t is time.  Note that 
the synchronous particle is always accelerated with the 
designed acceleration voltage Vac, which is uniquely 
determined by the magnetic ramping pattern of 
accelerator in terms of ρC0dB/dt, where ρ is the bending 
radius, C0 is the machine circumference, and B is the 
magnetic flux density.  Its dynamical variable has a 
subscript “s”.  These dynamical variables are measured 
right before entering the above representative 
acceleration device.  Introducing W =ΔE/ωs  and (ΔE=E-
Es), changes in W and φ per turn can be given by 

dW
dt

=
e V φ( )−Vac[ ]

2π
dφ
dt

=
ωs

2η
β s( )2

Es

W

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 ,                                (1) 
where e is the unit charge, V(φ) is the induction voltage 
seen by a particle, V(φ)=Vbb+ Vac, η is the slippage factor 
defined by 1/γ2

T – 1/γ2
s (γT is the transition gamma of the 

accelerator ring) and β and γ are the relativistic beta and 
gamma, respectively.  We assume the barrier voltages 
Vbb with a trapezoidal profile as depicted in Fig. 4a.  As 
the parameters of η, βs, γs, Es, and ωs can be regarded as 
constant for a short time period of the single synchrotron 
period, the orbit in the phase space is closed; it is nothing 
but the contour derived from the Hamiltonian, which 
mimics the barrier bucket shape as depicted in Fig. 4b.  
The motion in the barrier bucket is qualitatively divided 

into three regions: (I) focusing in the linear potential, (II) 
focusing in the parabolic potential, and (III) drift in the 
null voltage region.  It is noted that the motion in region 
(I) and (II) is subject to adiabatic damping.  In addition, 
it is emphasized that the exact solution throughout the 
region is known for the above short time period.   

 
Figure 4: (a) Barrier voltage profile with three distinct 
regions and peak height of V0. (b) Typical trajectory in 
the phase space 
 
  To analyze the temporal evolution of this oscillation 
amplitude associated with acceleration, we start from the 
canonical Eq. (1).  From Eq. (1), we have the second-
order differential equation with respect to φ, 

d 2φ
dt2 −

dA dt( )
A t( ) ⋅

dφ
dt

+
eVbb φ( )A t( )

2π = 0
,                 (2) 

where the abbreviation A(t)=|η|ω2
s/βsEs is used.  A 

temporal change in the phase of an individual particle is 
governed by Eq. (2).  Since the parameters in this 
equation include all information associated with 
acceleration, its solution can tell us what happens in the 
phase motion through the entire acceleration period.  To 
eliminate the damping term, a new variable u(t)=φ(t)/v(t) 
is introduced.  When v(t)=A1/2, Eq.(2) reduces to 

d2u
dt2 +

d2A dt2

2A t( ) −
3
4

dA dt( )2

A2 t( )
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
⋅ u t( )+ B t( ) = 0

,          (3) 
where B(t)=eVbb(φ)A1/2/2π.  Since A(t) is a slowly 
varying function of time, its first-order and second-order 
time-derivatives are small.  Accordingly, the second term 
in the left-hand side of Eq. (3) can be ignored in the 
further derivation.  We arrive at a final form of the phase 
oscillation equation that must be substantially solved, 
d2u/dt2=-B(t).  The restoring force B(t) can be assumed 
to be constant during a single synchrotron oscillation 
period T, which is much shorter than 1/(dA/dt)/A.  In 
addition, the synchrotron oscillation is symmetric in the 
phase space, as depicted in Fig. 4b.  If we obtain exact 
solutions in three regions of I, II, and III in Fig.4a, the 
synchrotron frequency Ωs=2π/T is written in an analytic 
form [5]. From the hypothesis, the instantaneous 
amplitude of the phase, <φ>, is given by 

φ = C
A
Ωs                                    (4) 
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where C is a constant coefficient determined from the 
initial condition.  Introducing the instantaneous 
oscillation amplitude in time <τ>=<φ>/ωs and 
substituting the analytic form into Eq. (4), we obtain 

τ 2 =C 2 8ηΔt1
πωseVbbβs

2Es

2
Δt1

τ − Δt1 + Δt2( ){ }+

sin−1 Δt1
Δt1

2 + 2Δt1 τ − Δt1 + Δt2( ){ }
⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

+
Δt2

Δt1
2 + 2Δt1 τ − Δt1 + Δt2( ){ }

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ ⎪ 

⎭ 

⎪ 
⎪ 
⎪     

 (5)                
Equation (5) is a transcendent function of <τ>.  Note that 
the equation includes information about the initial 
condition of an individual particle through the term of C, 
the barrier conditions of V0, Δt1, and Δt2, and the 
parameters of ωs, βs, Es, and η uniquely determined for a 
fixed accelerator. By solving Eq. (5), we can obtain the 
temporal evolution of the oscillation amplitude in time 
associated with the acceleration. 
  Here, we have to pay our attention on an important 
feature in the adiabatic damping of the synchrotron 
oscillation.  If the barrier condition is maintained to be a 
constant, a particle, the oscillation amplitude of which 
has initially extended to the flat barrier region (I), will 
fall in the linear barrier region (II) as a result of the 
adiabatic damping.  In this situation, Eq. (5) becomes 
invalid. Beyond the boundary between the linear and 
quadratic potentials, the analytical form for the 
synchrotron oscillation changes. The instantaneous 
oscillation amplitude in time must satisfy the following 
relationship, 

τ 2 =C2 8ηΔt1
πω seVbbβs

2Es

π
2

+
Δt2

τ − Δt2[ ]
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ ,    (6) 
where C is determined from the boundary condition.  
Consequently, Eq. (5) and Eq. (6) gives the oscillation 
amplitude in the regions where <τ> > (Δt1+Δt2) and <τ> 
< (Δt1+Δt2), respectively. These two solutions should be 
connected at <τ> = (Δt1+Δt2).   
  The present result has been obtained assuming the 
trapezoidal profile of the barrier voltage.  It is 
straightforward to know the temporal evolution of the 
oscillation amplitude <τ> for more extreme profiles, 
such as a rectangular profile (Δt1=0), a short profile 
(Δt2=0), and a discrete profile (Δt1=Δt2=0).  For the 
rectangular profile, 

τ 2 =C2 8η
πω seVbbβs

2Es
2 τ − Δt2( )+

Δt2

2 τ − Δt2( )
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪   (7) 
This form mostly suggests a particular feature of the 
adiabatic damping in the induction synchrotron, which 
can be distinguished from that in RF synchrotrons.  A 
solution of Eq. (7) is always written in terms of 
<τ>=g(t,Δt2)+ Δt2, where g(t,Δt2) is a slowly varying 
function of t and is subjected to adiabatic damping and 
gradually becomes smaller.  Since the isolated offset 
term of Δt2 is controllable, the oscillation amplitude can 
be maintained in a well controlled manner throughout the 
acceleration, as expected. 

COMPARISON WITH EXPERIMENTAL 
RESULTS 

Experimental results and analytical predictions can be 
compared only after loss at the beginning of acceleration, 
i.e. from 0.633 sec from injection as shown in Fig. 3.  
From this time onwards bunch shrinking can be 
attributed only to adiabatic damping.  Assuming an 
initial bunch length of 190 nsec, which was taken from 
the experimental result at t=0.633 sec, the theoretical 
prediction is plotted in Fig. 5.  We can see that both are 
in fairly good agreement. 
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Figure 5: Comparison between the experimental results 
and theoretical predictions after 0.633 sec from injection. 

SUMMARY 
A novel theory to estimate adiabatic damping 

phenomenon in the induction synchrotron has been 
presented.  The theory is based on an analogy of the 
WKB solution for a harmonic oscillator, the parameters 
of which slowly vary in time.  It has turned out that the 
theory can quantitatively explain the experimental results. 
In RF synchrotrons the bunch size infinitely shrinks 
beyond transition energy. We know that this is intrinsic 
feature in the RF synchrotrons.  However, this is not the 
case in an induction synchrotron.  The bunch-length in 
an induction synchrotron is mainly determined with the 
time duration between barrier voltages as expected.  This 
fact has been proven mathematically. 
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