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Abstract 

In the 2.5-GeV Photon Factory (PF) storage ring at 
KEK, a coherent synchrotron oscillation of the stored 
bunches has been observed. This oscillation appears in a 
beam spectrum as the synchrotron sidebands beside rf 
harmonics, or it can be observed directly using a streak 
camera. It emerges even under a very low beam current of 
1 mA or less, and its amplitude becomes small at high 
currents. Therefore, this oscillation could not be attributed 
to any beam instabilities. 

We have recently identified that this oscillation was 
mainly caused by a phase noise in an rf voltage. The noise 
was produced by a phase-lock loop (PLL) circuit in a low-
level rf system. We report both an experimental 
investigation and a cure for this oscillation. 

1  SYNCHROTRON OSCILLATION 
INDUCED BY AN RF PHASE NOISE 

When an rf phase is modulated by some noise, it can 
drive synchrotron oscillations of the stored electrons. This 
effect has been discussed, for example, in reference [1]. 
We review some of the results here. 

An equation of a small synchrotron oscillation under 
phase modulation φm(t) due to random noise is given by 

)()]([2 2 tftgs =+++ φωφλφ ��� ,  (1) 

with 
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where φ is the particle phase relative to the synchronous 
particle, λ the radiation damping rate, ωs the angular 
synchrotron frequency, φ0 the synchronous phase (defined 
by cosφ0 = U0/(eVc), where U0 is the radiation loss per 
turn and Vc the total rf voltage), and the dot denotes the 
derivative by time. We take the positive sign for the phase 
delays. When the phase modulation contains broadband 
spectrum, the g(t) term is less important than the f(t) term, 
and thus, we can neglect it. 

In order to ensure the convergence of the Fourier 
integrals used below, we take a long period 2T, and 
replace f(t) by its truncated function fT(t), which is defined 
by 
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Then, we investigate the following equation of motion: 
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By applying the Fourier transform, a stationary solution of 
Eq. (4) is given by 
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where F(ω) is the Fourier transform of fT(t), and H(ω) the 
transfer function, both of which are defined by 
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Due to a resonant form of H(ω), the frequency 
components of F(ω) at around the synchrotron frequency 
mainly contribute to the synchrotron oscillation. The 
phase-modulation at a frequency of ω = ωs results in a Q-
times larger phase oscillation, where Q = ωs/(2λ) is the Q-
value of the oscillator. 

We imagine N sets of similar systems, and consider an 
average of φ2 over such ensembles. From Eq. (5), we have 
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Assuming that the system is stationary, the above 
)()( tftf TT ′  should depend only on the time difference      

τ = t’ - t. Then, we define the autocorrelation function of 
fT(t) by 

)()()( ττ +≡ tftfR TTf .   (9) 

Integrating Eq. (8) yields 
)()()()( ωωδωωω ′+=′ fSFF ,  (10) 

where Sf(ω) is the spectral density which is defined by 
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Substituting Eq. (10) into Eq. (7) yields [1] 
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which is independent of t. When the system is both 
stationary and ergodic (i.e., the fT(t) takes its all possible 
values within a very long period), we can replace the 
ensemble average by a time average over the period of 2T 
[2]: 

TTTTT tftftftf )()()()( ττ +=+ . (13) 

In such a case, the spectral density is expressed by the 
Fourier transform of fT(t): 
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2  EXPERIMENT 
In the PF storage ring, four rf cavities provide a total rf 

voltage of 1.7 MV. Each cavity is driven by an 
independent klystron. A phase of each klystron output is 
locked to master rf, using a phase-lock loop (PLL). We 
recently found that a klystron output signal contains some 
phase noise, which is produced by the PLL circuit. Figure 
1 shows the spectra of the picked-up rf signals from one 
of the cavities; the upper trace shows the spectrum under 
usual condition (PLL on), while the lower trace shows the 
one under PLL off. We can see a broadband noise around 
the rf signal when the PLL was on. 
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Figure 1: Spectra of the picked-up signals from the cavity. 

 
Figure 2 shows a phase detector circuit[3] used for the 

PLL. Two rf signals are converted down to 500 kHz, 
while keeping the phase difference between them. These 
signals are converted to square-wave signals using a zero-
crossing detector, and then, the phase difference is 
detected using both a digital flip-flop and a low-pass filter. 
After some amplification, the output signal is fed back to 
a phase shifter. Linearity of the output voltage to the 
phase difference is excellent, however, the output signal 
may contain some white noise due to the square wave if 
the low-pass filtering at the end is not sufficient. In our 
case, a broadband phase-noise due to this would induce 
the coherent synchrotron oscillation, which had been 
observed in the PF storage ring. 
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Figure 2: Phase detector circuit used for the PLL. 

 
An experiment was carried out in the PF storage ring 

under single bunch operation with low beam currents (2.3 
- 3 mA). The principal parameters of the ring are given in 
Table 1. Figure 3 shows the beam spectra from a button- 
type monitor around the rf frequency; the upper trace was 
taken under an usual condition. We can see the 
synchrotron sidebands showing the coherent synchrotron 

oscillation; these sidebands were lower by about 41 dB 
from the rf peak. The lower trace in Fig. 3 shows the 
beam spectrum when we inserted a passive low-pass filter 
(LPF) between the phase detector and the phase shifter in 
each rf station. The LPF was an LC-filter having a cutoff 
frequency of 4.8 kHz. We also reduced a loop gain from 
39 dB to 31 dB. As a result, the synchrotron sidebands 
reduced by about 19 dB. In other words, by eliminating 
the high-frequency components of the noise, the coherent 
oscillation was reduced by an order of magnitude. This 
result clearly showed that the coherent synchrotron 
oscillation was induced mainly by the phase noise which 
was produced by the PLL circuits.  
 

Table 1: Principal parameters of the PF storage ring. 
Beam energy (E0) 2.5 GeV 
RF frequency (frf) 500.10718 MHz 
Total rf voltage (Vc) 1.7 MV 
Momentum compaction (α) 0.0061 
Synchrotron frequency (fs) 23.6 kHz 
Longitudinal damping rate (λ) 255 s-1 
Natural rms bunch length (στ) 31 ps 
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Figure 3: Spectra of the button-type electrode signal. 

 
An evolution of the coherent synchrotron oscillation 

φ(t) under usual conditions, which was measured by 
detecting the phase of the button-type monitor signal, is 
shown in Fig. 4. The upper trace shows the time 
evolution; the lower trace is the Fourier transform of it. 
Because the oscillation was driven by the random noise, 
the oscillation amplitude fluctuated. Its Fourier transform 
[Fig. 4(b)] showed a peak at the synchrotron frequency 
(fs) of 23.6 kHz. On the other hand, a similar measurement 
under noise reduction (Fig. 5) showed much smaller 
synchrotron oscillation. The peak at the synchrotron 
frequency [in Fig. 5(b)] reduced more than an order of 
magnitude; however, phase oscillations at low frequency 
increased to some extent due to an reduced feedback gain. 

Figure 6 shows the spectra of the phase noise in one of 
the cavities, which was detected using a double-balanced 
mixer. High-frequency phase noise, which can be seen in 
Fig. 6(a), decreased considerably after the noise reduction 
[Fig. 6(b)]. Rms amplitudes of the phase noise were about 
5.8 mrad and 3.3 mrad before and after the noise 
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Figure 4: Measured synchrotron oscillation under usual 

PLL conditions (without LPF’s, loop gain: 39 dB). 
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 Figure 5: Measured synchrotron oscillation after noise 

reduction (with LPF’s, loop gain: 31 dB). 
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Figure 6: Measured spectra of the phase noise in one of 

the cavities. (a) Without LPF, (b) with LPF. 
 

reduction, respectively. 
It is useful to compare the above experimental results 

with  the theoretical analysis given in Sec. 1. The 
measured synchrotron-oscillation amplitude σφ (defined 

by 
222 )()(
TT

tt φφσφ −≡ ) was 16 mrad from Fig. 4(a), 

and was 19 mrad from an average over ten such traces, 
respectively. On the other hand, an estimated rms 
amplitude, using Eqs. (12) and (14) with the measured 
phase noise, was 31 mrad from Fig. 6(a), and was 36 mrad 

from ten such traces, respectively. We should note here 
that the synchrotron oscillation and the cavity phase noise 
were recorded at the same time and that the cavity phase 
was detected only from one of the four cavities. The 
estimated amplitude was about two-times larger than the 
measured one. If the phase noises of the four cavities were 
not correlated to each other, an estimated rms synchrotron 
amplitude should be a half of the above estimation (i.e., 
16 mrad and 18 mrad, respectively). Taking this into 
account, the estimated rms amplitude agrees well with the 
measured synchrotron amplitude. 

Figure 7(b) shows the estimated Fourier spectrum of the 
synchrotron oscillation, using Eq. (5) with the phase-noise 
spectrum of Fig. 6(a). This spectrum is very similar to the 
measured one [Fig. 4(b)] except in high frequency range, 
where the measurement would be limited by a small noise. 
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Figure 7: Synchrotron oscillation spectrum calculated 

from the phase noise of Fig. 6(a). 

3  CONCLUSIONS 
We have shown experimentally that the coherent 

synchrotron oscillation of a bunch in the PF storage ring 
was mainly induced by an rf phase noise, which was 
produced by the PLL circuits. By both inserting low-pass 
filters at the end of the PLL circuits and reducing the 
feedback gain slightly, the coherent oscillation could be 
reduced. The observed amplitude of the synchrotron 
oscillation agreed with the one estimated from the 
measured phase noise. 

Under usual high-current operations, there has been few 
problems due to this oscillation because it is damped 
strongly by the Robinson damping effect. Under single-
bunch operation, on the other hand, the beam performance 
will be improved by reducing this oscillation since the 
Robinson damping is moderate. 
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