Outline

• Magnetic Field Sources
 – Ambient earth field
 – Remnant field from components
 – Thermal electrically induced field
• Magnetic Flux Trapping and Cavity Surface Resistance
• Design Requirements (Q related)
• Solution
 – Shielding
 • Shielding Material Properties
 • Design
 – Magnetic Hygiene Procedure
 – Fast Cool Down and Flux Expulsion
• Summaries
What are the sources of magnetic field?
LCLS-II tunnel direction is not ideal, not terrible either. (21º from the ideal orientation)

\[B_z = 500 \text{ mG} \times \cos (69\text{-deg}) \times \cos (60\text{-deg}) \]
\[= 89 \text{ mG} \]

Axial magnetic field is the main focus of the shielding
Magnetic Sources – SLAC Tunnel Wall (Bz)

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean B_x (Gauss)</th>
<th>Stdev B_x (Gauss)</th>
<th>Mean B_y (Gauss)</th>
<th>Stdev B_y (Gauss)</th>
<th>Mean B_z (Gauss)</th>
<th>Stdev B_z (Gauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongback</td>
<td>0.1074</td>
<td>0.0922</td>
<td>-0.4419</td>
<td>0.0650</td>
<td>0.0817</td>
<td>0.0326</td>
</tr>
<tr>
<td>Floor</td>
<td>0.1367</td>
<td>0.1041</td>
<td>-0.2867</td>
<td>0.0688</td>
<td>0.0350</td>
<td>0.0713</td>
</tr>
<tr>
<td>North Wall</td>
<td>0.1584</td>
<td>0.0885</td>
<td>-0.3847</td>
<td>0.0971</td>
<td>0.0872</td>
<td>0.0563</td>
</tr>
</tbody>
</table>

Worst case scenario: $B_z = 220$ mG

Carbon steel vessel provides some attenuation
Magnetic Sources – Cryomodule Components

- Tuners
- Couplers
- Metal pipes (Helium two phase pipe, GHRP)
- Supports
- Assembly hardware

One example:
1. A piezo bearing ball was highly magnetic due to presence of Co. (> 3 G on contact, >200 mG at the cavity)
2. It can be de-magnetized to < 5 mG at the cavity
3. It is now switched to ceramic

Magnetic Hygiene is a must for high Q cavities
Thermal Electromagnetic Field

- Thermal current induced field is a transient field

This thermal current field can be expelled before complete transition
Magnetic field needs to be minimized near cavity. How small does it need to be?
Magnetic Flux Trapping and Cavity Surface Resistance

The worst case scenario 3-4 mG maximum.

Design Requirement

- Determined by Q requirement
- Average effect
- May be higher in certain cavity location
- Numbers apply during cavity SC transition

<table>
<thead>
<tr>
<th>Facility</th>
<th>Average B Field</th>
<th>(Q_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCLS-II</td>
<td>< 5 mG</td>
<td>2.7 e10</td>
</tr>
<tr>
<td>Cornell ERL</td>
<td>A few mG</td>
<td>2.0 e10</td>
</tr>
<tr>
<td>KEK cERL</td>
<td>< 10 mG</td>
<td>1.0 e10</td>
</tr>
<tr>
<td>DESY XFEL</td>
<td>< 25 mG</td>
<td>1.0 e10</td>
</tr>
<tr>
<td>FRIB</td>
<td>< 15 mG</td>
<td>1-8 e9</td>
</tr>
</tbody>
</table>

\[
R_s = R_{\text{bcs}} + R(H_{\text{ext}}) + R_0
\]

LCLS-II assumes an average surface resistance \(R_0 \)
How do we achieve such low residual magnetic field?

- Magnetic shielding
- Magnetic hygiene
- Flux expulsion
Magnetic Shielding Engineering Solutions

- Material Selection
- Global Shield
- Local Shield
 - Layer choices
- Inside and Outside of Helium Vessel
- Active Cancellation
- Magnetic Foil Wrap
Material Properties

- Large selection of materials
 - Various heat treatment recipes
 - Different material compositions
 - Form factors

Conservative Permeability
Design Value ~ 10,000 – 12,000

Mika Masuzawa, et al., SRF 2013
Engineering Solutions – FRIB

- **Specification**
 - Ambient magnetic field < 15 mG
 - Saturation Field ~250 G

- **Local Shield**
 - Single layer, 1-mm (QWR), 2.2 mm (HWR)
 - A4K or Amumetal (μ > 10,000 @500mG @20K)

FRIB QWR Cryomodule Magnetic Shielding

Courtesy of K. Saito
Engineering Solutions – FRIB

• ReA6-1 Cryomodule Test
 – Local magnetic field on the vessel ~ 2 G (on contact)
 – Steel vessel attenuates by a factor of ~2.
 – Residual magnetic field ≤ 3 mG
Engineering Solutions – Cornell ERL

- Main linac cavity $Q_0 \approx 2\times10^9@16\text{MV/m}$
- Magnetic field as low as possible ($B < \text{a few mG at cavities}$)
- Two layers of magnetic shield for injector cryomodule
 - Global magnetic shield outside of thermal shield (0.5 mm A4K, 40/80K)
 - Local cryogenic magnetic shield outside of helium vessel (1mm A4K, 2K)
 - Stainless steel vacuum vessel
- Three layers of magnetic shield for main linac cryomodule
 - Global magnetic shield outside of thermal shield (0.5 mm A4K, 40/80K)
 - Local cryogenic magnetic shield outside of helium vessel (1mm A4K, 2K)
 - Carbon steel vacuum vessel, not demagnetized

Cavity Layer
Thermal shield Layer
Courtesy of M. Liepe and R. Eichhorn
Engineering Solutions – Cornell ERL

- ERL injector cryomodule demonstrated residual B field <3 mG (at room temperature)

Courtesy of M. Liepe and R. Eichhorn
Engineering Solutions – Cornell ERL

- ERL main linac cryomodule magnetic shielding
 - Attenuation factor ~10 for Bz.
 - Inner shield showed negligible internal B field upon receiving.
 - With other cryomodule components included, ambient B field is expected to be ~1 mG.
 - Cool down test soon.

Courtesy of M. Liepe and R. Eichhorn
Magnetic Shield for cERL Main Linac cavity system

The shape of the shield was decided to be square, rather than cylindrical to simplify the alignment & to avoid any mechanical stress added while bending.

Simulation
- Using the permeability data obtained @ LHe temp.
- Average magnetic field inside the cavities is less than 10 mG, which satisfies the requirement.
- Locations near various holes for couplers and so on show weak shielding(Max. being 18mG).
Engineering Solutions – LCLS-II

• No Global Shield
• Local Shield
 – Two layers with end caps that enclose the HOM couplers, FPC 2K flange and beam pipes
 – Inner surface of the shield is electrically isolated using g-10 support bars, that disrupts thermal current as much as possible.
 – METGLAS foil (10 layer) covers and minimizes open ports, extends the port covering. (Poster: TUPB099)
• Active cancellation
 – To reduce the longitudinal magnetic field component that is present despite of double layer and endcaps. (due to the geometric factor of long cylinders of magnetic shield)
 – Serves as an insurance policy in case of a high magnetic field was present and fast cool down cannot effectively expel magnetic field in a cryomodule
 – Provides possible demagnetization option in case the vacuum vessel becomes magnetized again after cryomodule is tested.
Engineering Solutions – LCLS-II Magnetic Shield Design

- Magnetic Shielding for the pCM is CryoPerm 10.
- The baseline permeability is >12,000@45K.
- Design allows the access to tuner motor and piezos.
The Challenge of Longitudinal B field and Edge Effect

- Geometric factor limits the attenuation of longitudinal B field
 - Longitudinal Field
 - Edge Effect

\[S \approx \frac{\mu \cdot d}{D} + 1 \]
\[S_{||} \approx \frac{4N(S_{\perp} - 1)}{1 + D/2L} \text{ closed cylinder} \]
\[S_{||} \approx 4NS_{\perp} \text{ open cylinder} \]

Shield unit couples with neighboring units. Active cancellation helps reduce Bz.

How do we achieve such low residual magnetic field?

- Magnetic shielding
- Magnetic hygiene
- Flux expulsion
Magnetic Hygiene Solutions – LCLS-II

• Permeability is not enforced
 • Any tool that measures permeability will magnetize the components inadvertently. De-magnetization may not be cost effective for many parts.
 • Permeability measurement is intrinsically inaccurate for non flat and irregular surfaces.

• Remnant Field
 • Measurement is done for all components that is within 3-in distance from cavity.
 • Measurement is done at contact and 1-in distance.
 • Working specification is provided for parts screening

• Demagnetization
 • Parts will be demagnetized or rejected based on the value and demagnetization labor cost. (Be careful with the tools)
 • Demagnetization of vacuum vessels
 • Demagnetization of assembled cryomodules
Magnetic Hygiene Solutions – LCLS-II

- Demagnetization of vacuum vessel
 - Internal magnetic field was greatly reduced.

1 Main coil + 2 Trims = 3 Independent Variables

Carbon steel vacuum vessel may have strong remnant field

Magnetic Hygiene Solutions – LCLS-II

- Demagnetization of a mock up cryomodule
 - Invar rod and/or magnetic shield had some remnant field
 - Combining cancelation coil and cryomodule demagnetization, the magnetic shield can meet the requirement any moment in a cryomodule life time

Cryomodule demagnetization is feasible and effective
How do we achieve such low residual magnetic field?

• Magnetic shielding
• Magnetic hygiene
• Flux expulsion
Flux Expulsion

S. Posen, et al., arXiv:1509.03957
Flux Expulsion during Fast Cool Down

- Movie was removed to reduce the size
Flux Expulsion during Fast Cool Down

Excellent cool down.
Cell #1 $\Delta T = 8K$
Cell #5 $\Delta T = 20K$
Cell #9 $\Delta T = 15K$

Large thermal gradients were achieved
Successful Magnetic Field Management Demonstrated

Slow cool down showed worse cavity Q
Summary

• A magnetic shield design combined with passive and active shield can realize a minimum remnant magnetic field during cavity superconducting transition.

• A comprehensive magnetic hygiene plan can prevent high field component being close to cavity

• Fast cool down can be effective as demonstrated in horizontal test.

• Fast cool down from 45K in a cryomodule will be tested when a pCM is tested.
Acknowledgement

• Information and discussions from
 – Matthias Liepe, Ralph Eicchorn
 – Kenji Saito
 – Mika Masuzawa
• Curtis Crawford, Iouri Terechkine, Chuck Grimm, Sebastian Aderhold, Saravan Chandrasekran.
• Anna Grassellino, Alex Romanenko, Martina Martinello, Mattia Checchin, Joe Ozelis, Dmitri Sergatskov.

• The magnetic shield research and development of TTF.