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Why bother?

* Demand for high duty cycle or cw beams in modern application (LCLS-II,
XFEL, bERLinPro...)

* Elevated dynamic losses
* Refrigeration efficiency = 1/1000
- Minimization of power loss and costs
* BCS resistance decreases with temperature, residual resistance not

* General interest in understanding loss mechanisms in sc cavities

bERLinPro 2



Status SRF 2013:
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Cooling conditions and thermal cycle can significantly impact and degrade

Thermal cycle can decrease as well
as increase the residual surface

resistance (low ambient magnetic
field)

O. Kugeler et al.,

“Influence of the Cooldown at the Transition
Temperature on the SRF Cavity Quality Factor”,
SRF’13, Paris, France, p. 370 (2013)
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Cooling conditions and thermal cycle can significantly impact and degrade

Thermal cycle can decrease as well
as increase the residual surface

resistance (low ambient magnetic
field)

O. Kugeler et al.,

“Influence of the Cooldown at the Transition
Temperature on the SRF Cavity Quality Factor”,
SRF’13, Paris, France, p. 370 (2013)

Sample test indicate major impact
of cooling dynamics (gradient/rate)

on flux expulsion
J.M. Vogt et al.,
“High QO Research: The Dynamics of Flux Trapping
in Superconducting Niobium”,
SRF’13, Paris, France, p. 374 (2013)



Status SRF 2013:
Cooling conditions and thermal cycle can significantly impact and degrade

the quality factor
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Status SRF 2013:
Cooling conditions and thermal cycle can significantly impact and degrade

the quality factor
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Status SRF 2013:
Cooling conditions can significantly impact and degrade the quality factor

Cornell confirmed: Thermal cycle improves Q
Courtesy R. Eichhorn
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Status SRF 2013:

Cooling conditions can significantly impact and degrade the quality factor
Cornell confirmed: Thermal cycle improves Q

Courtesy R. Eichhorn
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Status SRF 2013:
Community still in doubt if thermocurrents are origin of that magnetic flux

Open questions:

1.

More detailed study of the impact of temperature
difference on the surface resistance

Exact Seebeck coefficients in the temperature
regime of interest to analyze magnitude of
thermocurrents

Geometry and distribution of thermocurrents
Direct measurement of the magnetic field in the

cavity tank system and especially on RF surface



‘ 1. More detailed study of the impact of temperature difference on

the surface resistance
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1. More detailed study of the impact of temperature difference on
the surface resistance
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1. More detailed study of the impact of temperature difference on
the surface resistance
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‘ 1. More detailed study of the impact of temperature difference on
the surface resistance

CX2 CX4

* Temperature difference at the start of the phase transition:

Tex1+ T2 Texz + Texa when the first sensor
AT = 2 B 2 drops below 9.2K

* Drives thermoelectric current trough the system

13



‘ 1. More detailed study of the impact of temperature difference on

the surface resistance B
Rs(T)=A-exp () 4+ R res
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‘ Additional question: How does it apply to a doped cavity?
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‘ Additional question: How does it apply to a doped cavity?
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‘ Additional question: How does it apply to a doped cavity?
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‘ How can we validate the thermocurrent hypothesis?
Temperature

difference ﬁ Surface resistance
R

AT Correlation confirmed res
by experiment

Thermocurrent Trapped flux in the
| sc material

B
Magnetic field J

at the RF surface

\/ -

Magnetic field
B
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‘ How can we validate the thermocurrent hypothesis?

ﬁ Surface resistance
R

2. Exact Correlation confirmed res
in the by experiment

Temperature

temperature regime of
interest

Trapped flux in the
I sc material
B
. Magnetic field
Magnel’;lc Hicls at the RF surface

\/J
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‘ 2. Exact Seebeck coefficients in the temperature regime of interest
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‘ How can we validate the thermocurrent hypothesis?

Temperature
difference <:> Surface resistance
AT Correlation confirmed Rres
S values by experiment
Thermocurrent Magnetic field
| at the RF surface

B

Trapped flux in
the sc material

\/ -

Magnetic field
B
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‘ 2. Exact Seebeck coefficients in the temperature regime of interest
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‘ How can we validate the thermocurrent hypothesis?

Temperature
difference <:> Surface resistance
AT Correlation confirmed Rres
S values by experiment
Thermocurrent Trapped flux in
| the sc material
B
Magnetic field
Magnetic field
8 at the RF surface
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COMSOL simulation:
Niobium:
Inner cylinder (cavity)
Titanium:
Outer cylinder (He vessel)
End plates (vessel head)

Geometry of thermocurrents

helium vessel helium vessel
head (titanium) head (titanium)

cavity (blue)
helium vessel (red) <.

115.5...120.5
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Geometry of thermocurrents

helium vessel helium vessel
head (titanium) head (titanium)

103.3...106.1

cavity (blue)
helium vessel (red) <.

COMSOL simulation:

* Niobium:
Inner cylinder (cavity)

e Titanium:
Outer cylinder (He vessel)
End plates (vessel head) 26

115.5...120.5



‘ 3. Geometry of thermocurrents

xxxxx

10K 100K

. Magnetic field at the RF surface Temperature distribution

Symmetric current configuration
creates no field on the RF surface.
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‘ 3. Geometry of thermocurrents

. Magnetic field at the RF surface

10K

100K

Temperature distribution

Symmetric current configuration
creates no field on the RF surface.
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‘ 3. Geometry of thermocurrents: Breaking the symmetry

10K 100K

Symmetry can be broken by:

* Mechanical errors: A. Crawford, “A Study of Thermocurrent
Induced Magnetic Fields in ILC Cavities”,
http://arxiv.org/abs/1403.7996

 Temperature dependance of electrical resistance:

Additional temperature

Tank is filled from bottom to top =—> _
difference bottom to top
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3. Geometry of thermocurrents: Additional temperature difference
bottom to top
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‘ 3. Geometry of thermocurrents
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3. Geometry of thermocurrents: Highest degree of asymmetry when

parts of the cavity are superconducting R. Eichhorn et al.,
Courtesy R. Eichhorn “Thermocurrents and their Role in
high Q Cavity Performance”,
B (T) http://arxiv.org/abs/1411.5285
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‘ How can we validate the thermocurrent hypothesis?

rrelation confir
by experiment
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‘ 4. Direct measurement of the magnetic field on RF surface
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‘ How can we validate the thermocurrent hypothesis?

rrelation confir
by experiment
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‘ Summary: Thermocurrents in horizontal cavity test
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‘ How can we validate the thermocurrent hypothesis?

orrelation confir
by experiment

Argumentation loop closed:
hermocurrents exist and ca

significantly deteriorate a
otherwise perfectly prepared
cavity.




‘ Does the effect apply to every setup?

Not, if...
... only one aspect is satisfied

... There is no LHe tank (undressed vertical test)
— no closed circuit

... The system is (electrically) symmetric (vertical test)
— no gradient across cavity

... The system allows for symmetric LHe fill (modified LHe tank)
—> no gradient along cavity

Yes, if...
... both aspects are satisfied

... especially with couplers and tuners!

Well cooled
input side

along

A
4

along'

across

+—>

P =
P =
P
c

Poorly cooled
component
(e.g. “Saclay”
tuner)

across
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Thank you for your attention!
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