Author: Zhao, Z.
Paper Title Page
MOPB054 An Investigation of Correlations Between Mechanical and Microstructural Properties of High Purity Polycrystalline Niobium 219
 
  • Z. Zhao, T.R. Bieler, D. Kang
    Michigan State University, East Lansing, Michigan, USA
  • C. Compton
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, through Grant No. DE-FG02-09ER41638.
An understanding of the relationship between mechanical and functional properties, and processing history is essential in order to manufacture polycrystalline niobium cavities with consistent performance. The crystallographic texture (preferred crystal orientation) and microstructure in polycrystalline sheet varies considerably, so identifying its influence on properties is needed to achieve a better understanding of how to control properties of high purity niobium. Samples extracted from many lots produced by Tokyo Denkai and Ningxia sheet were examined. Through-thickness texture of the undeformed niobium samples was measured using electron backscattered pattern mapping. Texture is identified with pole figures, orientation distribution function, and grain misorientation relationships. Stress-strain tests were done to identify ultimate tensile stress, elongation, 0.2% yield strength, and hardening rate. From tests on many lots, there is no clear trend between the mechanical and material properties in high purity niobium and correlations between various microstructural and mechanical properties show significant scatter and few apparent correlations.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)