Author: Taylor, E.J.
Paper Title Page
MOPB092 Economics of Electropolishing Niobium SRF Cavities in Eco-Friendly Aqueous Electrolytes Without Hydrofluoric Acid 359
 
  • E.J. Taylor, T.D. Hall, M.E. Inman, S.T. Snyder
    Faraday Technology, Inc., Clayton, Ohio, USA
  • D. Holmes
    AES, Medford, New York, USA
  • A.M. Rowe
    Fermilab, Batavia, Illinois, USA
 
  A major challenge for industrialization of SRF cavity fabrication and processing is developing a supply chain to meet the high production demands of the ILC prior to establishment of a long term market need. Conventional SRF cavity electropolishing is based on hydrofluoric-sulfuric acid mixtures. In comparison, FARADAYIC® Bipolar EP applies pulse reverse electrolysis in dilute sulfuric acid-water solutions without hydrofluoric acid and offers substantial savings in operating and capital costs. Based on a preliminary economic analysis of the cavity processing requirements associated with the ILC, we project the cost of FARADAYIC® Bipolar EP to be about 27% that of the Baseline EP. In terms of tangible cost savings, the cost per cavity for the FARADAYIC® Bipolar EP and Baseline EP are \1,293 and \4,828, respectively. The “eco-friendly” intangible cost savings are generally accepted although the cost savings in terms of material degradation and maintenance are difficult to quantify at this time. Continued development and validation of FARADAYIC® Bipolar EP on nine cell cavities will contribute greatly to the industrialization of SRF accelerator technology.
Work supported by DOE Grant Nos. DE-SC0011235 and DE-SC0011342 and DOE Purchase Order No. 594128.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB093 Vertical Electropolishing Studies at Cornell 364
 
  • F. Furuta, B. Elmore, G.M. Ge, T. Gruber, G.H. Hoffstaetter, D.K. Krebs, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • T.D. Hall, M.E. Inman, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
  • H. Hayano, T. Saeki
    KEK, Ibaraki, Japan
  • Y.I. Ida, K.N. Nii
    MGH, Hyogo-ken, Japan
 
  Vertical Electro-Polishing (VEP) has been developed and applied on various SRF R&Ds at Cornell as primary surface process of Nb. Recent achievements had been demonstrated with nitrogen doped high-Q cavities for LCLS-II. Five 9-cell cavities processed with VEP and nitrogen doping at Cornell showed the high average Qo value of 3.0·1010 at 16MV/m, 2K, during vertical test. this achievement satisfied the required cavity specification values of LCLS-II(2.7·1010 at 16MV/m, 2K). We will report the details of these achievements and new VEP collaboration projects between Cornell and companies.  
poster icon Poster MOPB093 [4.364 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB101 Electropolishing of Niobium SRF Cavities in Eco-Friendly Aqueous Electrolytes Without Hydrofluoric Acid 390
 
  • M.E. Inman, T.D. Hall, S. Lucatero, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
  • F. Furuta, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.D. Mammosser
    ORNL, Oak Ridge, Tennessee, USA
  • A.M. Rowe
    Fermilab, Batavia, Illinois, USA
 
  Electropolishing of niobium cavities is conventionally conducted in high viscosity electrolytes consisting of concentrated sulfuric and hydrofluoric acids. This use of dangerous and ecologically damaging chemicals requires careful attention to safety protocols to avoid harmful worker exposure and environmental damage. We present an approach for electropolishing of niobium materials based on pulse reverse waveforms, enabling the use of low viscosity aqueous dilute sulfuric acid electrolytes without hydrofluoric acid, or aqueous near-neutral pH salt solutions without any acid. Results will be summarized for both cavity and coupon electropolishing for bulk and final polishing steps. With minimal optimization of pulse reverse waveform parameters we have demonstrated the ability to electropolish single-cell niobium SRF cavities and achieve at least equivalent performance compared to conventionally processed cavities. Cavities are electropolished in a vertical orientation filled with electrolyte and without rotation, offering numerous advantages from an industrial processing perspective. Shielding, external cooling and high surface area cathodes are adaptable to the bipolar EP process.
Work supported by DOE Grant Nos. DE-SC0011235 and DE-SC0011342 and DOE Purchase Order No. 594128.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)