Author: Steder, L.
Paper Title Page
MOPB079 Analysis of the Test Rate for European XFEL Series Cavities 316
 
  • J. Schaffran, S. Aderhold, D. Reschke, L. Steder, N. Walker
    DESY, Hamburg, Germany
  • L. Monaco
    INFN/LASA, Segrate (MI), Italy
 
  The main part of the superconducting European XFEL linear accelerator consists of 100 accelerator modules each containing eight RF-cavities. Before the installation to a module, all of these cavities will be tested at cryogenic temperatures in a vertical cryostat in the accelerator module test facility (AMTF) at DESY. This paper discusses the average vertical test rate at the present status. It should be 1 in the ideal case, but actually it’s observed to be approximately 1.5. Classification and analysis concerning the reasons for this deviation are given as well as suggestions for a reduction of the test rate for future production cycles.  
poster icon Poster MOPB079 [0.632 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
MOPB086 Update and Status of Vertical Test Results of the European XFEL Series Cavities 337
 
  • N. Walker, D. Reschke, J. Schaffran, L. Steder
    DESY, Hamburg, Germany
  • L. Monaco
    INFN/LASA, Segrate (MI), Italy
  • M. Wiencek
    IFJ-PAN, Kraków, Poland
 
  The series production by two industrial vendors of the 800 1.3-GHz superconducting cavities for the European XFEL has been on-going since the beginning of 2013 and will conclude towards the end of this year. As of publication some 740 cavities (~93%) have been produced at an average rate of 6 cavities per week. As part of the acceptance testing, all cavities have undergone at least one vertical RF test at 2K at the AMTF facility at DESY. The acceptance criterion for module assembly is based on the concept of a “usable gradient”, which is defined as the maximum field taking into account Q0 performance and allowed thresholds for field emission, as well as breakdown limits. Approximate 20% of the cavities have undergone further surface treatment in the DESY infrastructure to improve their usable gradient performance. In this paper we present the performance statistics of the vertical test results, as well as an analysis of the limiting criteria for the usable gradient, and finally the impact of the surface retreatment on both usable gradient and Q0.  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)  
 
TUPB085 Characterization of Optical Surface Properties of 1.3 GHz SRF Cavities for the European XFEL 795
 
  • M. Wenskat, L. Steder
    DESY, Hamburg, Germany
 
  The optical inspection of the inner surface of superconducting rf cavities is a well-established tool at many laboratories. Its purpose is to recognise and understand field limitations and to allow optical quality assurance during cavity production. Within the ILC-HiGrade programme at DESY, as part of the XFEL cavity production, an automated image processing and analysis algorithm has been developed that recognises structural boundaries. The count of features, the length of boundaries and their orientation can be used for characterisation. Appreciable differences are observed depending on the fabrication process at the vendor and the chemical treatment applied. The potential of this framework for automated quality assurance as an integral part of large-scale cavity production will be outlined. In addition, correlations between geometrical surface properties and the maximal accelerating field of twenty cavities have been found. These observations coincide with quench localisation by second sound of two cavities. The distribution of the limiting cell is vendor dependent, indicating weaknesses in the fabrication procedure.  
poster icon Poster TUPB085 [2.272 MB]  
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)