Author: Morrone, M.L.
Paper Title Page
TUPB094 Jefferson Lab Vertical Test Area RF System Improvement 823
 
  • T. Powers, M.L. Morrone
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 with supplemental funding from the LCLS-II Project U.S. DOE Contract No. DE-AC02-76SF00515.
RF systems for testing critically coupled SRF cavities require the ability to track the cavity frequency excursions while making accurate measurements of the radio frequency (RF) signals associated with the cavity. Two types of systems are being used at Jefferson Lab. The first, the traditional approach, is to use a voltage controlled oscillator configured as a phase locked loop such that it will track the cavity frequency. The more recently developed approach is to use a digital low level RF (LLRF) system in self excited loop (SEL) mode to track the cavity frequency. Using a digital LLRF system in SEL mode has the advantage that it is much easier to lock to the cavity’s resonant frequencies and they tend to have a wider capture range. This paper will report on the system designs used to implement the 12 GeV digital LLRF system in the JLAB vertical test area. Additionally, it will report on the system modifications which are being implemented so that the RF infrastructure in the VTA will be ready to support the LCLS II cryomodule production effort, which is scheduled to begin in calendar year 2016.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)