Paper | Title | Page |
---|---|---|
MOPB018 | Introduction of Precisely Controlled Microstructural Defects into SRF Cavity Niobium Sheets and Their Impact on Local Superconducting Properties | 120 |
|
||
Funding: Research supported by DOE/OHEP (contract number DE-FG02-09ER41638 at MSU and DE-SC0009960 at FSU) and the State of Florida. When SRF cavity shapes are formed from Nb sheets, the metallurgical processing introduces microstructural defects such as dislocations and low-angle grain boundaries that can serve as pinning centers for magnetic flux that may degrade cavity performance. Therefore, the relationship between magnetic flux behavior and microstructural defects in carefully strained SRF Nb sheet was investigated. Laue X-ray and EBSD-OIM crystallographic analyses of large grain ingot slices were used to characterize microstructural defects and then predict which grains and sample orientations will produce desired model defects due to tensile deformation. Grain orientations were chosen to favor specific slip systems, which generate dislocations with special angles with respect to the sample surface. Nb bicrystals were also prepared to investigate the effects of grain boundaries on flux pinning. The generated defect structures were confirmed by OIM and TEM. Cryogenic magneto-optical imaging was used to directly observe the penetration of magnetic flux into the deformed Nb. These model samples have deformation that is similar to that expected in typical cavity forming processes. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB052 | Determination of Bulk and Surface Superconducting Properties of N2-Doped Cold Worked, Heat Treated and Electro-polished SRF Grade Niobium | 214 |
|
||
Funding: Support for this work at FSU was from US DOE Award# DE-SC0009960 and the State of Florida Additional support for the National High Magnetic Field Laboratory facilities is from the NSF: NSF-DMR-1157490 Nitrogen-doped cavities show significant performance improvement in the medium accelerating field regime due to a lowered RF surface resistivity. However, the mechanism of enhancement has not been clearly explained. Our experiments explore how N2-doping influences Nb bulk and surface superconducting properties, and compare the N2-doped properties with those obtained previously with conventionally treated samples. High purity Nb-rod was mechanically deformed and post treated based on a typical SRF cavity treatment recipe. The onset of flux penetration at Hc1, and the upper and the surface critical fields, Hc2 and Hc3, were characterized by magnetic hysteresis and AC susceptibility techniques. The surface depth profile responsible for superconductivity was examined by changing AC amplitude in AC susceptibility, and the microstructure was directly observed with EBSD-OIM. We are also investigating surface chemistry for detailed composition using XPS. We have found that N2-doping at 800 °C significantly reduces the Hc3/Hc2 ratio towards the ideal value of ~1.7, and conclude that AC susceptibility is capable of following changes to the surface properties induced by N2-doping. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |