Author: Holmes, D.
Paper Title Page
MOPB092 Economics of Electropolishing Niobium SRF Cavities in Eco-Friendly Aqueous Electrolytes Without Hydrofluoric Acid 359
 
  • E.J. Taylor, T.D. Hall, M.E. Inman, S.T. Snyder
    Faraday Technology, Inc., Clayton, Ohio, USA
  • D. Holmes
    AES, Medford, New York, USA
  • A.M. Rowe
    Fermilab, Batavia, Illinois, USA
 
  A major challenge for industrialization of SRF cavity fabrication and processing is developing a supply chain to meet the high production demands of the ILC prior to establishment of a long term market need. Conventional SRF cavity electropolishing is based on hydrofluoric-sulfuric acid mixtures. In comparison, FARADAYIC® Bipolar EP applies pulse reverse electrolysis in dilute sulfuric acid-water solutions without hydrofluoric acid and offers substantial savings in operating and capital costs. Based on a preliminary economic analysis of the cavity processing requirements associated with the ILC, we project the cost of FARADAYIC® Bipolar EP to be about 27% that of the Baseline EP. In terms of tangible cost savings, the cost per cavity for the FARADAYIC® Bipolar EP and Baseline EP are \1,293 and \4,828, respectively. The “eco-friendly” intangible cost savings are generally accepted although the cost savings in terms of material degradation and maintenance are difficult to quantify at this time. Continued development and validation of FARADAYIC® Bipolar EP on nine cell cavities will contribute greatly to the industrialization of SRF accelerator technology.
Work supported by DOE Grant Nos. DE-SC0011235 and DE-SC0011342 and DOE Purchase Order No. 594128.
 
Export • reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml)