BAUMIER.C^{1,2,3}, ANTOINE.C.Z.³, FORTUNA.F², MARTINET.G¹, VILLEGIER J.C.⁴.

MULTILAYERS ACTIVITIES AT ORSAY/SACLAY

1 IPNO, IN2P3-CNRS, Université Paris Sud , F-91406 Orsay Cedex, France 2 CSNSM IN2P3-CNRS, Université Paris Sud, F-91406 Orsay Cedex, France 3 CEA, Irfu, SACM, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France 4 CEA, Inac, 17 Rue des Martyrs, 38054 Grenoble-Cedex-9, France

- Introduction to ML
- H_{C1} measurement / magnetometer
- R_s measurement / TE011 cavity
- Multilayers deposition / MBE
- Conclusion and perspectives

Multilayers / theory

Multilayers: Nb / insulator/ superconductor / insulator /superconductor...

Outside wall \leftarrow Nb I-S-I-S- $H_{applied}$ H_{Nb} Cavity's internal surface \rightarrow

B(mT)1E+12 1E+12 0 1E+11 1E+10 1E+10 1E+09 0 20 40 60 E_{acc} (MV/m)

In principle :

- Artificial enhancement of $H_{c1} \rightarrow$ Thin SC films. d< λ (1)
- Applied field is reduce by each layer.
- Niobium surface screening: allows higher field in the cavity
- NbN thin film : higher T_c => higher Q₀
- Insulating layer prevents Josephson coupling between layers
- The accelerating field can be increased without high field dissipation
- High $H_{c1} \rightarrow$ no transition, no vortex in the layer

Overcoming niobium limits (A.Gurevich, 2006) :

(1) In theory 20 nm NbN : $H_{C1} \times 200$

$$R_{s}^{NbN} \approx \frac{1}{10} R_{s}^{Nb} \Rightarrow Q_{0}^{\text{multi}} >> Q_{0}^{Nb}$$

(similar improvement expected with MgB₂ or Nb₃Sn)

Model samples: magnetron sputtered* on monocrystalline sapphire

RF Samples: magnetron sputtered* on Nb **disks** (similar conditions)

Samples	Nb thickness	NbN thickness	Number of NbN/MgO ^a sequences	Тс (К)
R	250 nm	NA	0	8.9 ^b
SL	250 nm	25 nm	1	16.38 ^b
ML4a	500 nm	25 nm	4	15.1 ^c
rf-ML4	Bulk, polycrystalline	25 nm	4	
rf-ML2	Bulk, large grain	50 nm	2	Not directly known
Rf-Nb	Bulk, polycristalline	NA	0	

* Collaboration with CEA Inac

Samples (continued) RF samples

Magnetometry experiment done On ML4 sample

RF experiment done, waiting for the magnetometer measurement.

Sample Magnetron sputtered @ CEA Inac

Magnetometer

Early results

CZ Antoine, JC Villegier, G Martinet, Applied Physics Letters 102 (10), 102603-102603-4

- High field exp. measurements limited (~60 mT)
 by unexpected heating of the system
- Interference between the various films of the multilayer
- Recently diagnosed as Foucault losses in coil Slit to reduce holder.
- A slit was added in the coil holder.

arnothing 5 mm coil

Magnetometry (continued)

- Magnetic screening evidenced for ML4 up to 38 mT, at T~7K
- Dramatic transition around 38 mT => r_{coil} << r_{sample} not valid anymore ?
- Magnetometer is effective up to 1500 mA (equivalent field 150 mT) Tp° 2-40 K
- Use of larger samples is mandatory

Residual resistance (the only non predictable part of Rs) is not "that" bad

Sample quality can be improve .

Thermal analysis

- Strong indication that R_{BCS} is improved with ML
- Could probably be improved with the use of thicker layers (complete screening)
- Very promising preliminary results

Nitruration Source

COMICS Source

A new tool under commissioning

High purity base from ultra high vaccum : 1.10⁻¹⁰ mBar 1.10⁻⁸ and 1.10⁻⁷mBar for working vaccum conditions. Better control of parameters

- ML structures seem to be a promising way to go beyond Nb for accelerator cavities
 - Effective screening of the surface, prevents early vortex penetration
 - R_{BCS} is improved with the use of higher T_c SC
 - R_{res} is not dramatically degraded compared to Nb
 - Room for improvement: better understanding of interaction with substrate needed
- 2 strategies need to be developed in parallel:
 - Deposition method for cavities / see poster TUP081
 - Understanding the physics of ML and optimization of their structures
- Adequate tools for the testing of many samples are now effective
- Effort must be now carried on the production of ML on samples and cavities

Thanks to P2IO Financial Support

DE LA RECHERCHE À L'INDUSTRIE

Cédric BAUMIER - SRF2013

Thank you for your attention

