

Q-Slope Studies at Fermilab: New Insight From Cavity and Cutouts Investigations

A. Romanenko Fermilab

Outline

- New experimental findings on Q slopes
 - Decomposition of the components of surface resistance (R_{BCS} and R_{res})
 - Shows which Q slope is due to what component
- New superconducting measurements
 - Low energy muon spin rotation
 - Baked/unbaked cutouts
 - N doped
- New proximity effect model of the high field Q slope
 - Evidence from cryogenic TEM investigations in cutouts
- New model of the 120C baking
 - Vacancy-based 120C baking mechanism and supporting evidence from cutouts
 - Suppression of the second phase of hydrides in direct observations
- Conclusions

 Using different temperature dependence to deconvolute the components of average surface resistance at <u>ALL</u> fields

$$R_{s}(T) = R_{BCS}(T) + R_{res}$$
Due to thermally excited Non-T-dependent, saturation value at quasiparticles T-> 0

January 29, 2014

Rs(B) decomposition

A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

January 29, 2014

Residual resistance

A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

January 29, 2014

BCS resistance

A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)

January 29, 2014

SC gap change with field

Role of thermal "feedback"

Instead of modeling the full temperature transfer with only $R_s=G/Q_0$ as an input use temperature mapping to measure the outside wall temperature

Negligible effect on R_{BCS} at T <= 2K

More – hot topic session on Thursday

January 29, 2014

T-map data shows that local surface resistance in HFQS regime is highly correlated to Rs at lower fields (MFQS)

More info – please see [A. Romanenko et al, TUP101]

January 29, 2014

- High field Q slope is due to residual
 - Not SC gap closing, thermal feedback etc.
- Medium field Q slope is a combination of R_{BCS} and R_{res}
 - Not due to the difference in Trf and Tbath
 - Correlation between high and medium fields in unbaked cavities
- Low field Q slope is likely due to residual

- Bulk muon spectroscopy
 A. Grassellino et al, TUP031
- Low energy muon spectroscopy
 A. Romanenko et al, TUP038
- Bitter decoration
 - F. Barkov et al, TUP016

January 29, 2014

Muon spin rotation

Muon spin rotation – measure B(z)Fermilab

Fermilab LEM – data on EP baked/unbaked

Use variable energy muons, which stop in the first ~100nm

Fit by Gaussian model for the field at the muon site – approximate, qualitative comparison

- Main element: presence of small proximity effect coupled nanohydrides within the penetration depth
 - Q disease "in miniature"
- Consistent with all experiments, provides quantitative description
- Falsifiable
 - Testable predictions

A. Romanenko, F. Barkov, L. D. Cooley, A. Grassellino, Supercond. Sci. Technol. 26 (2013) 035003

January 29, 2014

Fermilab Neither no

Neither standard 800C degassing nor "fast" cooldown help

Near-surface H-rich layer is still there after standard H degassing treatments

Integrate the H diffusion over the time spent in the precipitation temperature range T < 160K = L > 1 um

All free near-surface H will precipitate into hydrides

SRF2013 PARIS International conference on RF Superconductivity

January 29, 2014

T= 300K T= 2K Note drastic change in the hydrogen-related m.f.p.

Excellent

fits

Proximity effect model

• Normal conducting hydrides of size *d* are superconducting by proximity effect up to the field $H_b \sim 1/d$

2.0x10⁻

1.8x10⁻⁷

1.6x10⁻⁷

1.4x10⁻⁷

1.2x10

1.0x10⁻¹

6.0x10⁻⁶ 4.0x10⁻⁶ 2.0x10⁻⁶

0.0

95

100

G/Q₀ (Ohm)

Experimental

High field Q slope

105

110

115

Fit

A. Romanenko, F. Barkov, L. D. Cooley, A. Grassellino, Supercond. Sci. Technol. 26 (2013) 035003

January 29, 2014

• So what happens with 120C bake?

January 29, 2014

Fermilab Positron annihilation on cavity cutouts

A. Romanenko, C. J. Edwardson, P. G. Coleman, P. J. Simpson, Appl. Phys. Lett. 102, 232601 (2013)

- Positron annihilation spectroscopy: 120C baking results in "doping" of the first ~50 nm from the surface with defects, most likely vacancies
 - EP itself introduces some vacancies in ~1 um may be the reason for more efficient 120C baking in EP cavities

A. Romanenko, C. J. Edwardson, P. G. Coleman, P. J. Simpson, Appl. Phys. Lett. 102, 232601 (2013)

🛟 Fermilab

January 29, 2014

Effect of 120C baking

Cooling down of 120C baked niobium

Note no change in the hydrogen-related m.f.p. - remains low

January 29, 2014

Fermilab TEM evidence for nanohydrides

 Direct imaging of the cross-sections of cavity cutouts in cryo-TEM [see Y. Trenikhina et al, TUP043]

See also R. Tao et al, J. Appl. Phys. 114, 044306 (2013) and TUP042 for cryoimaging of H-reach Nb samples

January 29, 2014

Alexander Romanenko

ENERGY

Fermilab Direct evidence for nanohydrides

Y. Trenikhina et al, TUP043

NED at room T Hot and Cold spot: NO additional reflections, just Nb

Hot spot NED at 94K: low T phase(s) along with Nb

"Statistics" of the second phase appearance: 44%-68% of the probed spots

January 29, 2014

Direct observation of large hydrides

F. Barkov et al, TUP014

Growing of hydrides at T=160K in a mechanically polished sample

Further evidence: 100K and 120C baking effect

 Second phase (lower concentration, lower temperature) forms at 100K
 – NOT observed on 120C baked samples

January 29, 2014

Summary

- Both residual and BCS surface resistances carry a field dependence
 - Analysis of Q slopes should only be done on components
- Mean free path/ Meissner screening is lowest, depthdependent in 120C baked material, highest in unbaked, Ndoping leads to the "intermediate" situation
- Nanohydrides may be an omnipresent entity not appreciated before
 - May be THE cause of the high field Q slope
 - Proximity-induced superconductivity breaks down at lower fields than host (Nb)
 - May be related to the residual resistance field dependence
 - Dominant source of the medium field Q slope in unbaked cavities
 - Absence of nanohydrides may be behind the effect of doping
 - Plausible mechanism of 120C baking -> trapping of hydrogen by vacancies -> preventing/decreasing size of nanohydrides

- FNAL: F. Barkov, A. Grassellino, A. Crawford, D. Sergatskov, O. Melnychuk, R. Pilipenko
- IIT/FNAL: Y. Trenikhina
- IIT: J. Zasadsinski

- Univ. of Chicago: S. Antipov
- Cornell Univ.: H. Padamsee

January 29, 2014