FROM RESEARCH TO INDUSTRY

CAVITY DEVELOPMENT FOR THE LINEAR IFMIF PROTOTYPE ACCELERATOR

N. BAZIN

On behalf of the CEA SRF Linac Team

www.cea.fr

Overview of the Linear IFMIF Prototype Accelerator (LIPAc) and the cryomodule

□RF design and tests of the HWR prototypes

□New cavity design

- □ International Fusion Material Irradiation Facility (IFMIF): 2 accelerators in parallel
- □ Each accelerator: 125 mA deuteron beam, 40 MeV, CW
- EVEDA (Engineering Validation and Engineering Design Activities): first phase to validate the key technologies

□ Linear IFMIF Prototype Accelerator (LIPAc) to be tested at Rokkasho – Japan

□ International collaboration between Europe and Japan

FROM RESEARCH TO INDUSTR

THE LIPAC CRYOMODULE

8 Half Wave Resonators (operating temperature 4.4 K)

□ 8 RF Power Couplers

- CW operation (70 kW max)
- See H. Jenhani, THP056

- Vertical position
- One room temperature window

8 Superconducting Solenoid Packages

- Focusing solenoid with shielding
- H & V steerers
- Cold BPM

Cryostat

Target Values of complete Cryomodule			
Frequency	175 MHz		
β value of the HWR	0.094		
Accelerating field E _a	4.5 MV/m		
Unloaded Quality factor Q_0 for $R_s=20 \text{ n}\Omega$ at nominal field	1.4×10 ⁹		
Beam aperture HWR/SP	40 / 50 mm		
Freq. range of HWR tuning syst	± 50 kHz		
Freq. Resolution of tuners	200 Hz		
Max. transmitted RF power by coupler in CW (for LIPAc)	70 kW		
Max. reflected RF power in CW	20 kW		
External quality factor Q _{ex}	6.3×10 ⁴		
Magnetic field B_z on axis max.	6 T		
∫ B.dl on axis	1 T.m		
Field at cavity flange	≤ 20 mT		
CBPM position meas. Accuracy	0.25 mm		
CBPM phase meas. accuracy	2 deg		
Total Static/Dynamic Heat losses	18 / 120 W		

RF DESIGN AND TESTS OF THE HWR PROTOTYPES

| PAGE 6

Original design includes a capacitive plunger tuner (2009)

Parameter	Value	Unit
Frequency	175.366	MHz
Maximum r/Q	150	Ohm
Optimum beta	0.11	
Design beta	0.094	
r/Q @ design beta	140	Ohm
Epk/Eacc	4.8	
Bpk/Eacc	11	mT/(MV/m)

PLUNGER AS TUNING SYSTEM

- Deformation of a thin NbTi membrane
- Tuning range: ± 50 kHz -> membrane deformation: ± 1 mm
- Lever-arm system based on Saclay type tuners
- Plunger cooled with liquid helium

SRF 2013 – N. BAZIN

Problems during manufacturing:

- Break of NbTi thin layer during rolling procedure
- Flatness of membrane
- Breakdown of the welding
 (plunger-membrane)

Butt fits correctly when installed on the cavity

VERTICAL TEST WITH THE PLUNGER

- Test with one of the two HWR prototypes
- Standard surface treatment (BCP, HPR), assembly and test @ IPN Orsay

- Quench events at 1 MV/m on the plunger
- Measured Q_o at low field 1.7x10⁸ (10 times lower than expected)

RF dissipation breakdown

Cavity areas	1/2 Integral(Hsurf ²) dS (1/2 cav)	RF dissipation (W)
Membrane (Nb)	7,58E+02	3,41E-04
gasket (Sn)	5,61E+01	9,98E-01
Plunger outer cylinder (Nb)	1,75E+03	7,00E-05
Plunger facing cavity (Nb)	5,55E+02	2,22E-05
Tuner flange (NbTi) vert.	5,96E+01	5,72E-06
Tuner flange (NbTi) horiz	6,50E+02	6,24E-05
Tuner port (Nb)	1,85E+03	7,38E-05
Coupler port and cap (Nb)	1,84E+01	7,35E-07
Cavite excluding all of the above (Nb)	3,49E+06	1,39E-01
TOTAL		1,14E+00
QO		1,61E+08

- Enhancement of magnetic field near central stem
- Rf losses in the gasket extremely difficult to predict
- Depend on the seal surface seen by the RF
- Estimation: up to 25W @ 4.5 MV/m for Helicoflex HN200

Explanations of the tests results:

Combination of seal dissipation and bad thermal conductivity of the niobium-titanium membrane

PROOF-OF-PRINCIPLE NIOBIUM PLUNGER

Basically no change in RF properties

- Manufacturing of a proof-of-principle simple fixed-position plunger out of high RRR niobium only
- Use of an indium seal to minimize the surface of non superconducting material exposed to RF

VERTICAL TESTS RESULTS

- Q₀ still lower than expected
- Prototype 1: quench at 2.6 MV/m (4.5 W in the cavity)
- Prototype 2: quench at 1.23 MV/m

RF dissipation breakdown

Cavity areas	RF dissipation (W)
Membrane (Nb)	2,02E-04
Seal (Indium)	6,03E-01
Plunger outer cylinder (Nb)	4,66E-04
Plunger facing cavity (Nb)	1,48E-04
Tuner flange (NbTi) vert.	3,81E-05
Tuner flange (NbTi) horiz	4,15E-04
Tuner port (Nb)	4,91E-04
Coupler port and cap (Nb)	4,89E-06
Cavite excluding all of the above (Nb)	9,28E-01
TOTAL	1,53E+00
Q0	7,97E+08

Indium seal measured at 0.5 mm thickness after vertical test- > gain of a factor 11 on the seal losses with respect to the previous test configuration for a given E_{acc} value

- Measured Q₀ between 2x10⁸ and 3x10⁸ is not explained by this analysis. 3W are missing at E_{acc} =2.6 MV/m
- Changing the membrane material from NbTi to Nb prevents heat build-up or low field quench but does not improve Q_0
- Overall less power dissipated in the plunger seal than in previous test : the quench must originate from another area of the cavity

TEST OF P01 WITH INVERTED PLUNGER

H is reduced by a factor of 25 on the NbTi tuner flange with respect to the previous situation

- He tank removed
- 18 CERNOX T-sensors on critical areas

- Q₀ recovered
- Quench occurring on one HPR port

POSSIBLE SOURCE OF DISSIPATION: THE NB / NBTI WELD

The weld between the plunger NbTi flange and the Nb cavity body, which is exposed to RF, could be the source of dissipation.

Thermal simulation:

The missing 3 W to explain the value of Q_0 @ E_{acc}=2.6 MV/m are seeded in the weld

SRF 2013 - N. BAZIN

Material analysis: preliminary results

- LIBS measurements: small variations of Ti and Nb concentrations in the weld seam
- **D** EDX analysis: Ti enriched area

part of the weld may have a low Tc

FROM RESEARCH TO INDUSTR

PROTOTYPE 2

NbTi plunger flange removed and port closed with Nb disk

SRF 2013 – N. BAZIN

NEW CAVITY DESIGN

HWR DESIGN

- RF properties similar to the ones for the prototypes
- Capacitive tuner abandoned and replaced by an external mechanical tuner
- -> HWR wall deformation on beam axis
- He tank simplified

Stress level acceptable in both cases for a 3 mm thick cavity

HWR TUNER

PAGE 19

- The full tuning range can be obtained by compressing the cavity only (requirements: 60 kHz)
- The HWR must not be mechanically stressed due to the tuner during cooldown and warmup phases -> disengagement system mandatory
- The amplitude of the displacement needed on each beam port is 0.3 mm, which corresponds to a 8000 N compressive force and a HWR detuning of -78 kHz

❑ Original tuner design: capacitive plunger

- Quench at low field, poor Q₀
- RF and thermal models developed to understand the phenomena
- NbTi flange and / or NbTi Nb weld could be the cause of the problem
- Proposal for a future capacitive plunger: avoid NbTi in moderate field area
 > Nb flange and Nb plunger
- □ New cavity design
 - External mechanical tuner based on Saclay-type system
 - Stress level in materials acceptable in regards to pressure vessel regulation
 - Production of the cavities for the cryomodule will be launched in next few weeks

Nicolas BAZIN CEA Saclay Institut des Lois Fondamentales de l'Univers (IRFU)

nicolas.bazin@cea,fr

