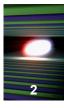


Infrastructure, Methods and Test Results for the Testing of 800 Series Cavities for the European XFEL

Detlef Reschke / DESY for all colleagues working on European XFEL series cavities



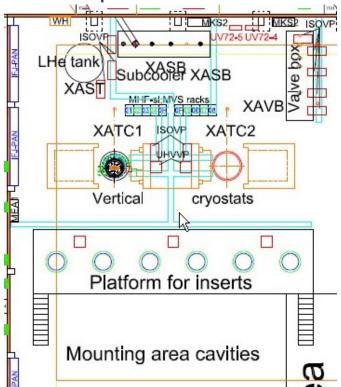
FEL Outline

- Introduction
- Infrastructure for Vertical Acceptance Tests
- Cavities
- Procedures
- Vertical Test Results
 - "As received"
 - After re-treatment
 - Q-Values
- Summary + Outlook

_ Introduction

- Vertical acceptance tests of European XFEL
 - Pre-Series + Series Cavities
 - "HiGrade"-Cavities
- 800 pre-series + series cavities
- ≥ 8 cavities per week (=> 1 module per week)
- Cavities are produced and surface treated at industryTalk by W. Singer MOIOA03

Status of vertical tests: September 10!



FEL Infrastructure: AMTF

- Accelerator Module Test Facility
- New Infrastructure for vertical acceptance test (+ module tests)
 - Two independent vertical cryostats
 - Six inserts for four cavities each
 - Two independent rf test stands

XFEL Infrastructure: AMTF II

- Vertical tests started in Feb 2013 (IFJ-Pan & DESY)
- Parallel commissioning of inserts + vertical tests on series cavities (last insert to be qualified end of Sep)
- New software for vertical tests
- no Second Sound; no T-Mappingif necessary at hall3

FEL Cavities

- Cavities arrive at DESY in a transport box
 - Fully equipped with HOM-antennas, Pick-up antenna + fix High Q antenna
 - Under vacuum
 - Ready for testing
- A) Pre-Series + Series Cavities with He-tank
- B) "HiGrade" Cavities without He-tank
 - 12 cavities by each vendor
 - Use as quality control with the option of Second Sound and/or T-Mapping
 - (later: use for high gradient ILC research)

Poster MOP043
Poster MOP053

XFEL Procedures: Incoming Inspection

Incoming inspection checks

Poster MOP037

Mechanical: damages during transport, obvious assembly errors
 => feedback to companies!

• Electrical: pi-mode frequency + fundamental mode spectrum, shorts at

antennas

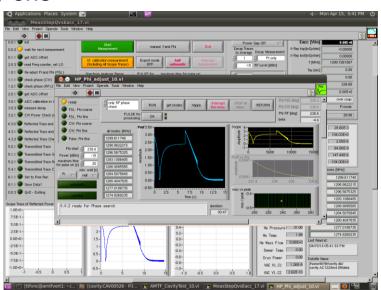
Poster MOP052

Vacuum: next slide

Poster THP093

XFEL Procedures: Preparation for Vertical Test

- RF preparation:
 - Time-Domain reflectometer measurement
 - Tuning of Fundamental Mode Rejection Filters of both HOM couplers
- Vacuum:
 - Leak check (< 1 x 10⁻¹⁰ mbar·l/s)
 - Residual Gas Analysis => check for hydro carbon contamination



XFEL Procedures III: Vertical Acceptance Test at 2K

- "Standard" cavity test at 2K
 - Measurement of Q₀(E_{acc}) in π-mode
 - Measurement of fundamental mode frequencies
 - X-ray measurement on top and below each cryostat
 - Remark: no Q₀(T),
 - no $Q_0(E_{acc})$ in fundamental modes,
 - no $Q_0(E_{acc})$ at various bath temperatures
 - Remark II: RF measurement one by one

Procedures: Outgoing inspection + transport

- Outgoing inspection: backwards incoming inspection
- Transport to CEA Saclay for string + module assembly

Procedures: Result + Decision

Vertical test results stored as raw data and in XFEL Cavity data base

Poster MOP041

- Acceptance Criteria:
 - "...maximum gradient > 26 MV/m with an unloaded Q_0 of $\geq 1x10^{10}$ and a X-ray level lower than $1x10^{-2}$ mGy/min." (with 26 MV/m to give 10% margin compared to 23.6 MV/m design gradient)
- If acceptance criteria passed=> preparation for transport + string assembly
- If acceptance criteria is not passed
 - => re-treatment at DESY

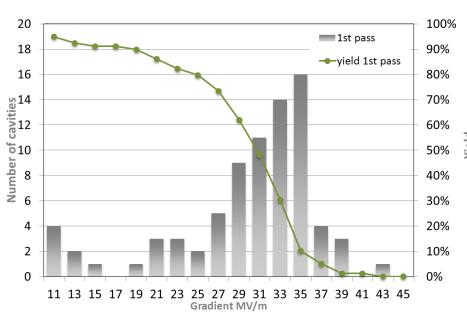
(Reminder: **No performance guarantee by the vendors**, i.e. the risk of unexpected low gradient or field emission is with DESY)

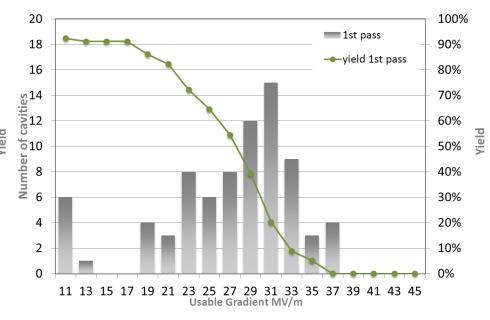
"Usable Gradient": i) Quenchii) Q₀ < 1x10¹⁰

iii) radiation > 1x10⁻² mGy/min

_ Vertical test results: As received / 1. Pass

- 79 cavities tested as received (1. pass) with
 - 23 from Research Instruments (RI)
 - 56 from E. Zanon (EZ)
- As received: 50 cavities passed
 - 15 from RI
 - 35 from EZ
- Strict application of acceptance criteria (Comment: Some cavities retreated though acceptance criteria formally met)
- No selection, no cut
- 29 cavities in re-treatment loop => later





Yield of gradients: As received / 1. Pass

Yield of usable and maximum gradient of 79 cavities as received

Average maximum gradient:

 $(28.1 \pm 7.8) \, MV/m$

EZ: $(27.6 \pm 7.7) \text{ MV/m}$

RI: $(29.2 \pm 8.2) \text{ MV/m}$

Average usable gradient:

 $(25.0 \pm 7.7) \, MV/m$

EZ: $(24.5 \pm 7.6) \text{ MV/m}$

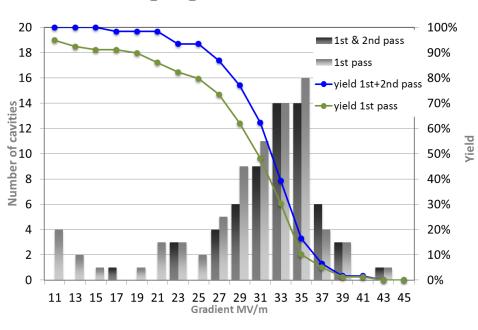
RI: $(26.1 \pm 7.8) \text{ MV/m}$

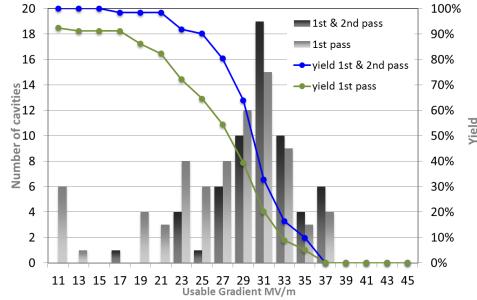
given errors are standard deviation

SRF Conference, Paris, Sep 22 – 27, 2013 Detlef Reschke, DESY

Vertical test results: Re-treatment / 2. Pass

- Re-treatment decided mainly because of field emission and/or low Q-value
- Two re-treatment options at DESY applied:
 - High Pressure Rinsing (HPR)
 - 10µm BCP + HPR + 120C bake
- after HPR: 13 cavities with 11 passed
- after BCP: 1 cavities with 0 passed
- 15 cavities missing???
 - => still in re-treatment loop !!!





Yield of gradients: After re-treatment (2. pass)

- Yield of usable and maximum gradient of 64 cavities (2.pass):
 50 cavities passed in 1.pass + 14 cavities after re-treatment
- Average gradients increased + spread reduced (standard deviation)

Average **maximum** gradient:

 $(30.9 \pm 4.4) \, MV/m$

EZ: $(30.4 \pm 4.5) \text{ MV/m}$

RI: $(32.3 \pm 4.1) \text{ MV/m}$

Average **usable** gradient:

 $(29.0 \pm 3.9) \, MV/m$

EZ: $(28.4 \pm 4.0) \text{ MV/m}$

RI: $(30.6 \pm 3.1) \,\text{MV/m}$

FEL Vertical test results: Q-Values

- Measurement with fix coupling
 - => overcoupled at low and medium gradients
 - => larger error than β ≈ 1
- Low field Q₀-value:
- As received / 1.pass: (as before 79 cavities)

$$Q_{0,max} = (2.2 \pm 0.4) \cdot 10^{10}$$
 (standard deviation)

- After re-treatment / 2.pass: $Q_{0,max} = (2.4 \pm 0.4) \cdot 10^{10}$ (as before 64 cavities)
- Few cavities show Q-value < 2 · 10¹⁰ at low gradient
 => feedback and quality control to companies

Poster MOP042

Summary + Outlook

- Vertical test operation in AMTF started successfully
- Handling + inspection procedures for series cavity delivery developed and in application
- Vertical acceptance test results are satisfactory for both vendors
- Re-treatment by HPR at DESY very successful
- 44 cavities shipped to Saclay
- Ramp-up to > 8 cavities tested per week
- Follow-up of gradient and Q-value for quality control
- Goal: Improvement of "as received"-yield

Acknowledgement

- Thanks to all colleagues of the different institutes and companies involved in cavity production, surface preparation and cavity testing
- Special thanks to Krzysztof Krzysik, Laura Monaco, Vladimir Gubarev and Nick Walker for their material for this talk

text

FEL Infrastructure: Hall 3

- "Old" Infrastructure for vertical acceptance test
 - Two vertical cryostats
 - Four inserts for one cavity each
 - Two independent rf test stands
 - Analysis with Second Sound + Temperature Mapping available (only for cavities w/o He-tank!)

