# Density-Functional Theory Calculations Relevant to Hydride Formation and Prevention

SRF - Paris - September 23, 2013

Denise Ford

Argonne National Laboratory (previously affiliated with Fermi National Accelerator Laboratory and Northwestern University)



NORTHWESTERN





#### Acknowledgments

- Dr. Lance Cooley
- Prof. David Seidman
- Computing resources at Fermilab and Argonne National Laboratory
- Funding from Fermilab

# SRF Cavity Limitations Related to Impurities in Niobium



#### Impurities can

- be dissolved in the metal and cause reduction of T<sub>c</sub> and local heating
- form precipitates with local magnetic moments or reduced T<sub>c</sub>

# **Density Functional Theory Modeling**



- Solve the electronic structure problem for the model systems using DFT in VASP
- Assess properties such as binding energy, charge distribution, and niobium lattice strain

### Hydride Phase Formation



Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 095002

September 23, 2013

5

SRF 2013

#### **Denise Ford**

#### Interstitial Hydrogen, Oxygen, Nitrogen, and Carbon



|                                               | $Nb_{128}H$ | $Nb_{128}O$ | $Nb_{128}N$ | $Nb_{128}C$ |
|-----------------------------------------------|-------------|-------------|-------------|-------------|
| Charge on interstitial atom (e <sup>.</sup> ) | -0.65       | -1.35       | -1.63       | -1.76       |
| Binding energy (eV)                           | -2.41       | -7.02       | -7.39       | -8.48       |
| Lattice strain energy (eV)                    | 0.11        | 0.83        | 0.83        | 0.96        |

Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 105003

SRF 2013

**Denise Ford** 

September 23, 2013

# Hydride Phase Prevention by Absorbed Oxygen

- Further examination of oxygen showed
  - Interstitial oxygen traps interstitial hydrogen
  - Oxygen preferentially migrates to niobium site vacancies over hydrogen
- Mechanism for the low temperature bake (which mitigates Q-slope)
  - -> Break up hydride phases
  - -> Detrap hydrogen from niobium lattice defects
  - -> Block phase nucleation sites with oxygen atoms
  - -> Trap interstitial hydrogen with interstitial oxygen atoms
- Would nitrogen have a similar effect?

Ford D C, Cooley L D and Seidman D N 2013 Supercond. Sci. Technol. 26 105003

# Hydrogen Trapping by Oxygen and Nitrogen



### Hydrogen, Oxygen, and Nitrogen in Niobium Site Vacancies



#### Hydrogen, Oxygen, and Nitrogen in Niobium Site Vacancies



# Hydrogen, Oxygen, Nitrogen, and Carbon in Niobium Site Vacancies



# Hydrogen, Oxygen, and Nitrogen in Niobium

• Vacancy trapping and detrapping energies<sup>1,2,3</sup>:

N>O>H

- Effect on superconducting transition temperature<sup>4,5,6</sup>
  - 0>N>H
  - hydride precipitates  $T_c < 2 K$
  - some nitrides  $T_c > 10 \text{ K}$

 Hautojarvi P, et al. 1985 Phys. Rev. B 32 4326–31; 2. Igata N, Miyahara K, Ohno K and Hakomori K 1982 J. Nucl. Mater. 108/109 234–9; 3. Wechsler M S and Murty K L 1989 Metall. Trans. A 20A 2637– 49; 4. DeSorbo W 1963 Phys. Rev. 132 107–23; 5. Jisrawi N M, et al. 1998 Phys. Rev. B 58 6585–90;
Ohlendorf D and Wicke E 1979 J. Phys. Chem. Solids 40 721–8

# Conclusions

- Suggested improvements for processing
  - Tailor bake temperature and time to eliminate hydride precipitates and supply the appropriate amount of oxygen to prevent their reformation
  - Potentially use nitrogen for milder effect on superconducting transition temperature
- Future work
  - Examine the formation of nitride phases in niobium
  - Examine the effect of various Nb<sub>x</sub>N<sub>y</sub>, Nb<sub>x</sub>N<sub>y</sub>H<sub>z</sub>, Nb<sub>x</sub>O<sub>y</sub>H<sub>z</sub> complexes on the superconducting properties of the niobium
  - Examine the role of dislocations in hydride phase formation/prevention

# Hydrogen in Niobium

- α, α' interstitial hydrogen dispersed in bcc niobium
- β, ε ordered hydrogen interstitials in fco niobium
- δ ordered hydrogen interstitials in fcc niobium – fluorite structure
- $\lambda$ ,  $\lambda_c$  experimentally unconfirmed phases



R.E. Ricker, G.R. Myneni, J. Res. Natl. Inst. Stand. Technol., 115, 1 (2010).

# **Density Functional Theory Modeling**

- Solve the electronic structure problem for the model system
- Parameters
  - Vienna Ab Initio Simulation Package (VASP)
  - Plane wave basis set w/400 eV cutoff
  - PAW pseudopotentials to describe atomic cores
  - PBE-GGA exchange-correlation functional
  - 0.25/Å gamma-centered *k*-point mesh
- Bader Method to assign local properties