

The FRIB Project At MSU

Matthaeus Leitner SRF Department Manager

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Rare Isotope Production At MSU NSCL Coupled Cyclotron Facility

http://www.nscl.msu.edu/interactivemap.html

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University **D. Leitner**, et al, Status of the ReAccelerator Facility ReA For Rare Isotopes Beam Research, **SRF 2011**, Chicago

Rare Isotope Production At MSU NSCL Coupled Cyclotron Facility

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University **D. Leitner**, et al, *Status of the ReAccelerator Facility ReA For Rare Isotopes Beam Research*, **SRF 2011**, Chicago

FRIB Superconducting Driver Linac Layout Is Folded Into Three Accelerator Sections

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University **J. Wei**, et al, *The FRIB Project – Accelerator Challenges and Progress*, **HIAT 2012**, Chicago

SRF Systems - Cavities

Cavity Type	Quantity of Cavities	Quantity of Modules	Quantity of Solenoids
β=0.041	12	3	6
β=0.085	88	11	33
β=0.29	72	12	12
β=0.53	144	18	18
Additional	6	2 (β=0.085)	
Bunching	4	2 (β=0.29)	n/a
Modules	4	1 (β=0.53)	
Total	330	49	69

β=0.29 Matching

β=0.29 Matching

Beam Delivery System To Target

β=0.085 Matching

M. Leitner, SRF 2013, Slide 9

FRIB Has Implemented Cavity Designs With Significant Operational Safety Margin At Low Cavity Costs

	*		-		1
NR IN 15	(Ce			i	
		J		+/	
	10	-			and the second second

FRIB Linac Operational Parameters				
O a suite a T and a	QWR	QWR	HWR	HWR
Cavity Type	#1	#2	#1	#2
β	0.041	0.085	0.29	0.53
Frequency [MHz]	80.5	80.5	322	322
Temperature [K]	2	2	2	2
Aperture [mm]	36	36	40	40
Cavity Ø [m]	0.18	0.27	0.29	0.46
βλ [m]	0.16	0.317	0.27	0.493
R/Q [Ω]	401.6	455.4	224.4	229.5
G [Ω]	15.3	22.3	77.9	107.4
Avg. Accel. V _a [MV]	0.81	1.78	2.09	3.7
V _a /βλ [MV/m]	5.1	5.6	7.7	7.5
V _a /Cavity Ø [MV/m]	4.5	6.6	7.2	8.0
E _n at V _a [MV/m]	30.8	33.4	33.3	26.5
B_{p} at V _a [mT]	54.6	68.9	59.6	63.2
Dissipation at V _a [W]	1.32	3.88	3.55	7.9
Max. Beam Power [W]	313	690	1526	2701
Min. RF Bandw. [Hz]	40	40	30	30
Installed RF Power [kW]	0.7	2.5	3.0	5.0

- BCP processing and 600 °C furnace treatment Helium vessel made of titanium
- Max. Pressure Rating At 300 K: 2.2 atm
- Relief Pressure At 2 K: 10.8 atm

SRF Systems – Procurement Status

- 23 FRIB-relevant cavity prototypes have been successfully tested
 8 β=0.041 cavities, 11 β=0.085 cavities, 5 β=0.53 cavities
- Production cavities are procured using a phased approach
 - 2 development cavities, undressed (no helium vessel) 🖛 CONFIRM FINAL DESIGN
 - 10 dressed pre-production cavities (with helium vessel) CONFIRM PRODUCTION
 - Production cavities
- Production Cavities Fabrication Status:
 - First development cavities have been successfully fabricated and delivered
 - $>\beta=0.53$ Roark Welding & Engineering Co., Inc. (received and certified)
 - »β=0.29 Roark Welding & Engineering Co., Inc. (received)
 - »β=0.085 Pavac Industries, Inc. (delivery early 2014)
 - β =0.53 FRIB production contract placed for 144 cavities.
 - Rest of cavity production contracts will be placed by end of this year.

M. Leitner, et al, *Status of the Linac SRF* Acquisition for FRIB, **LINAC 2012**, Tel-Aviv

Niobium – Procurement Status

- FRIB project procured \$13.2M of niobium material
- FRIB niobium material contracts awarded to three vendors
 - Wah Chang Niobium Titanium (Nb-Ti)
 - Tokyo Denkai Residual Resistivity Ratio (RRR) Nb sheet
 - Ningxia RRR Nb sheet and tube
- Niobium procurement broken into four task orders
- Niobium specifications
 - RRR > 250

FR

- Grain Size (ASTM #5): 64 µm
- Yield Strength (0.2% offset): 7000 psi min.
- Tensile Strength: 14000 psi min.
- Elongation: 40 % min. longitudinal
- Elongation: 35 % min. transverse
- Hardness, HV 10: 60 max.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Niobium Acceptance Testing At FRIB Ensures Quality Control At Vendors

- Minimum of two samples per production lot are tested:
- Mechanical properties measured include
 - Ultimate strength (strain rate 5mm/min to fracture)
 - Yield strength (strain rate 5 mm/min to fracture)
 - Elongation (strain rate 5 mm/min to fracture)
 - Hardness (Hv microhardness) (100 grams load)
- Metallurgy properties measured include
 - Grain size (distribution)
 - Crystal orientation (not specified)
 - Recrystallization (>90%)

Misorientation Distribution

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

C. Compton: MOP033

FRIB Requires Mass Production Of Large Niobium Sheets

- Largest sheets from Ningxia: 900 mm x 1070 mm x 2mm
- Tubes from Ningxia: 30 to 50 mm OD, 4 mm wall thickness
- Largest sheets from Tokyo Denkai: 620 mm x 620 mm x 3mm

Large Sheet Production Is Susceptible to Pitting By Loose Niobium Particles

- Surface defects too deep to polish out
- Internal investigation initiated to determine root cause
 - Potential impurity concern (within material)
 - Potential surface contamination concern (introduced during rolling)
 - Potential annealing concern (orientation and dislocations)
 - Pit enhancement or generation from etching concern
- Experimental analysis at FRIB identified origin of pits:
 - Loose niobium particles imprinted during sheet rolling
 - Secondary Electron Microscopy images consistent with external particles embedded and later re-loosened
 - Energy-dispersive X-ray Spectroscopy confirmed that no impurities are found in or around pits, surface particles are niobium
- Quality improvements at vendor required
 - Improve cleanliness, implement clean zones throughout material fabrication

QWR Will Utilize ANL Coupler With Cold Window And 90 Degree Bend, HWR Will Utilize SNS-Style Coupler With Single Warm Window

Coupler Type	QWR β=0.085	HWR β=0.53	RF Conditioning Teststand
Frequency [MHz]	80.5	322	
Line Impedance [Ω] (*) will change to 75 Ω	50	50 ^(*)	ACAUTION Neisatras
Cavity RF Bandwidth [Hz]	40	30	
Installed RF Power [kW]	2.5	5	
Max. Coupler Power Rating [kW]	4	10	
Manual Coupling Adjustment	1/2 To 2 Time	s Bandwidth	
Coupler Interface	1-5/8" EIA	3-1/8" EIA	
Total Heat Load To 2 K At Nominal RF Power [W]	0.13	0.6	
Total Heat Load To 4.5 K At Nominal RF Power [W]	1.3	2.7	
Total Heat Load To 55 K At Nominal RF Power [W]	7.1	6.2	

M.P. Kelly, et al, Compact 4 kW Variable RF Power Coupler For FRIB Quarter-Wave Cavities, LINAC 2012, Tel-Aviv

L. Popielarski: THP067, R. Oweiss: THP053

Multipacting Free HWR Coupler Development

- Multipacting free coupler under development to mitigate risk of extended RF conditioning needs during FRIB operation
- Constraints: Compatible and interchangeable with the present coupler design
 Same RF 50 Ω connector, same 3-1/8" RF port
- Simulations confirm: MP levels suppressed up to FRIB operation E_a

FRIB Cavity Tuner Designs Are Finalized Performance Has Been Validated

Tuner Type	QWR β=0.085	HWR β=0.53
Minimum Tuning Range [kHz]	30	120
Tuning Resolution (2% of Bandwidth) [Hz]	0.8	0.6
Maximum Backlash (5% of Bandwidth) [Hz]	2	1.5
Cavity Tuning Sensitivity (calculated) [kHz/mm]	~ 3.2	~ 236.2
Maximum Displacement [mm] (*) port-to-port	±7.5	-0.5 ^(*)
Cavity df/dp (Free Tuner) (calculated) [Hz/torr]	~ -1.4	~ -3.43
Cavity LFD (Free Tuner) (calculated) [Hz/(MV/m) ²]	~ -0.7	~ -3

Increased cavity frequency tunability by welding "tuning puck" to tuning plate providing ±30 kHz final tuning range.

Test Status: Operation Verified During Integrated Vertical Test

Test Status: Operational In ReA3 Cryomodules

M. Leitner, SRF 2013, Slide 18

First FRIB-style Quarter Wave Cryomodule Under Construction: Cavities Operate At 2 K, Solenoids At 4.5 K

Novel Self-Aligning, Kinematic Support-System Has Been Tested During Several Cool-Downs And Functions Consistently At High Repeatability and Accuracy

- Alignment of cavities and solenoids stay well within alignment specifications
- Optical target measurement results
 - Cavity alignment

 within +/- 0.003" (0.076 mm) horizontally
 within +/- 0.002" (0.05 mm) vertically
- Wire Position Monitor measurements
 - Cavity alignment

 within +/- 0.003" (0.076 mm) horizontally
 within +/- 0.001" (0.03 mm) vertically

Fixed Support

Cavity mount provides stress-free thermal contraction with significant anti-rocking stiffness – essential for quarter wave resonators M. Leitner, SRF 2013, Slide 20

FRIB Develops Technical Innovations For Low-Beta Cryomodules

3D Shaped O-Ring Separated Cavity / Cryomodule Isolation Vacuum

Rail Assembly Optimized For Mass Production Self-Aligning Support System

Custom Rail Heat Treatment Full Stress Relieve To Minimize Distortion During Cool-Down Reset To Austenitic State (Min. Permeability)

Heat Treatment Data from Vendor

SRF Mass Production Will Occur In New MSU SRF Facility 27,000 sq. ft. SRF High Bay - Building Completion: April 2014

SRF Mass Production Will Occur In New MSU SRF Facility 27,000 sq. ft. SRF High Bay - Building Completion: April 2014

SRF Mass Production Will Occur In New MSU SRF Facility 27,000 sq. ft. SRF High Bay - Building Completion: April 2014

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Summary

- The U.S. Department of Energy Office of Science has baselined the FRIB construction project: Cost \$ 730M, Earliest Completion: 2020
- Linac tunnel construction is scheduled to start in April 2014.
- All FRIB SRF subsystem designs have been finalized and prototypes have been successfully tested.
- Cavity designs have been optimized for best performance at low fabrication costs: FRIB industrial production contracts have been awarded for all niobium material as well as β=0.53 cavities. Rest of cavity production contracts will be placed by end of this year.
- FRIB will build two more cryomodule prototypes before 2015 at which point cavity and cryomodule mass production will commence.
- Innovative FRIB cryomodule design incorporates features optimized for largescale linac installations.
- MSU invests in significant SRF research infrastructure to establish future lowbeta SRF center promoting campus-wide synergies and innovation.

MICHINGAN STATE INCLUSION STATE INCLUSION STATE INCLUSION STATE INCLUSION STATE

TALKS

MOIOA01: M. Leitner, The FRIB Project At MSU

THIOA04: S. Miller, Low-Beta Cryomodule Design Optimized for Large-Scale Linac Installations

THIOD02: A. Facco, Faced Issues in ReA3 Quarter-Wave Resonators and their Successful Resolution

POSTERS

- MOP013: K. Saito, SRF Developments at MSU for FRIB
- MOP033: C. Compton, Quality Assurance and Acceptance Testing of Niobium Material for Use in the Construction of the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU)
- MOP067: J. Ozelis, Results From Initial Tests of The 1st Production Prototype Beta=0.29 and Beta=0.53 HWR Cavities for FRIB
- MOP088: J. Popielarski, Vertical Cavity Test Program in Support of FRIB Development
- TUP016: D. Kang, Effects of Processing History on Damage Layer Evolution in Large Grain Nb Cavities
- TUP017: D. Kang, Study of Slip and Dislocations in High Purity Single Crystal Nb for Accelerator Cavities
- TUP018: A. Mapar, Non-Schmid Crystal Plasticity Modeling of Deformation of Niobium
- TUP037: A. Mapar, Dynamic Hardening Rule; A Generalization to the Classical Hardening Rule for Crystal Plasticity
- TUP045: K. Elliot, An Investigation into the Role of Acid Velocity on Etching Uniformity in Niobium SRF Cavities
- TUP067: S. Chandrasekaran, Hydrogen Saturation and the Thermal Conductivity of Superconducting Niobium
- THP046: K. Saito, Magnetic Material Characterization & SC Solenoid Coil Package Design for FRIB
- THP053: R. Oweiss, Development of Quality Control Procedures for the Processing of ReA3 Copper Plated Fundamental Power Couplers (FPCs)

THP067: L. Popielarski, Testing of Copper Plating Quality on ReA3 Coupler Bellows and Approach to Improved Plating for FRIB Production

