

ESS elliptical cavities and cryomodules

G. Devanz CEA/Saclay IRFU On behalf of the cryomodule technical demonstrator team

source The European Spallation Source linac

Beam power (MW)	5
beam current (mA)	62.5
Linac energy (GeV)	2
Beam pulse length (ms)	2.86
Repetition rate (Hz)	14

Segmented, superconducting linac, with RT focusing elements

	Num. of CMs	Num. of cavities
Spoke	13	26
6-cell medium β	9	36
5-cell high β	21	84

യ

4-cavity cryomodules

- Similarity with SNS in size and purpose : reuse the same concepts
- Common design for medium and high beta
 - made sensible thanks to the small length difference between 6-cell medium and 5-cell high beta cavities
 - Main components are identical : vaccum vessels, thermal shield, supports, alignment system, etc.
 - Only few elements differ : details in cryo piping, beam pipe bellows

CM cross-section

Cavity package

Component insertion order

œ

Elliptical cavities RF parameters

	Medium	High
Geometrical beta	0.67	0.86
Frequency (MHz)	704.42	
Number of cells	6	5
Operating temperature (K)		2
Maximum surface field in operation (MV/m)	44	44
Nominal Accelerating gradient (MV/m)	< 16.7	< 19.9
Q ₀ at nominal gradient	> 5e9	
Q _{ext}	7.5 10 ⁵	7.6 10 ⁵

	Medium	High
Iris diameter (mm)	94	120
Cell to cell coupling k (%)	1.22	1.8
π and 5 π /6 (or 4 π /5) mode separation (MHz)	0.54	1.2
E_{pk}/E_{acc}	2.36	2.2
B _{pk} /E _{acc} (mT/(MV/m))	4.79	4.3
Maximum. r/Q (Ω)	394	477
Optimum β	0.705	0.92
G (Ω)	196.63	241

SOURCE

High beta has 2 L-bands below cutoff

G. Devanz - SRF 2013 - Paris

œ

HOM damping by NC parts

EUROPEAN

SPALLATION

HOM damping - More realistic coupler modeling

Electric field amplitude (logscale) – 1420 MHz

F (MHz)	Matched termination	Doorknob + WG
1 420 300	1.58e5	4.06E+05
1 421 018	4.30e3	2.38E+04
1 431 633	3.22e4	6.36E+05
1 442 796	3.30e4	1.27E+06
1 456 101	4.41e4	5.05E+05
1 480 038	1.98e4	1.29E+05
1 491 485	1.33e4	2.03E+05
1 505 199	1.40e4	4.99E+05
1 518 257	1.87e4	1.94E+05
1 527 899	4.57e4	6.08E+05

Still, the transmission characteristics of the high power waveguide network are unknown. (Here, the rectangular WG is terminated by a lossy short.) Power deposited on the non-

EUROPEAN

SPALLATION SOURCE

propagating longitudinal modes

Medium beta HOMs

🖌 Irfu

œ

Medium beta HOMs

- Above cut-off : full module simulation is required to estimate r/Qs and damping
- Cryomodule end tubes can help damping the HOMs at higher temperature

Example : mode of 2nd longitudinal band is a cryomodule mode

Work in progress...

Source Medium beta RF/Mechanical parameters

<u>(</u>

Cavity wall thickness (mm)	4
Tuning sensitivity (kHz/mm)	217
Stiffness (kN/mm)	1.47
K _L static Lorentz coefficient (Hz/(MV/m)²) (fixed ends)	-0.71
K _L static Lorentz coefficient (Hz/(MV/m) ²)	-21.1
K _L static Lorentz coefficient (Hz/(MV/m)²) for Kext=21 kN/mm (🛛 🔴)	-2.06
Max. relative pressure (bar) in He vessel at 300K keeping V.M. stress in	2.2
cavity wall < 40 MPa (fixed ends, pressure test case)	2.2
Max. Von Mises stress (MPa) in cavity wall with 1.5 bar in helium vessel	28

Cavity components

G. Devanz - SRF 2013 - Paris

High beta prototype cavity

High beta prototype

Delivered last week

Coupler side

Tuner side

Extra « HOM » ports for RF measurements on the prototypes

Cold tuning system

- Saclay V type adapted for ESS cavities
- +/- 3 mm range
- 1+1 piezo
- Cold motor and planetary gearbox (1/100e)

■ Piezo support has a stiffness 10 times higher than the cavity ⇒ piezo preload at 2K is independant of the cavity springback force

200000

300000

400000

100000

EUROPEAN SPALLATION SOURCE

-100000

Type V for SPL beta = 1 5-cell prototype

50000G. Devanz - SRF 2013 - Paris

Fundamental power coupler

HIPPI power coupler (KEK-type window) tested to 1.2 MW, 10% Duty factor at Saclay

Test of the HIPPI power coupler on the HIPPI cavity at 1.8 K, 20 Tull reflection

0

0

Magnetic shield

Limit contribution of the trapped flux to the surface resistance to 4 n Ω limit the external static field to Bext = 14 mG. \rightarrow required shielding efficiency equal to 35.

Achievable with 1.5 mm, μ_r =20000 shielding material

G. Devanz - SRF 2013 - Paris

0

Outlook

Prfu 🖾

- Design of most cryomodule components well advanced
- Phase of medium beta cavity package procurement
- Development of cavity preparation has started with a very similar SPL beta=1 5-cell cavity

- A new clean room is under construction at Saclay for SPIRAL2 and ESS first cryomodules assembly
- The medium beta cryomodule will be then and tested at Saclay

704.42 MHz 5-cell Beta=1 in Saclay Vertical. EP