

SRF CAVITIES FOR FUTURE ION LINACS

Zachary Conway September 27, 2013 Argonne National Laboratory Physics Division

Collaborators (Short Version)

- ANL:
 - PHY: S. Gerbick, M. Kedzie, M. Kelly, S.H. Kim, S. Kutsaev, B. Mustapha, and
 P. Ostroumov.
 - HEP Division: R. Murphy and T. Reid.
 - NE Division: A. Barcikowski, G. Cherry, R. Fischer and J. Morgan.
- FNAL Project-X Personnel: D. Bice, I. Gonin, A. Klebaner, V. Lebedev, A. Lunin, T. Khabiboulline, T. Nicol, T. Peterson, R. Kephart, L. Ristori, A. Rowe, R. Stanek, M. White and more.
- Soreq-NRC SARAF Personnel: D. Berkovits, I. Mardor, A. Perry, J. Rodnizki and more.
- J. Delayen, ODU-JLAB.
- R. Laxdal, TRIUMF.
- G. Olry, GANIL.
- A. Facco, INFN-Legnaro/MSU-FRIB
- Many Vendors:
 - Advanced Energy Systems.
 - Meyer Tool and Manufacturing.
 - Sciaky.
 - ATI Wah Chang.

- Numerical Precision.
- Adron Tool.
- ATI Wah Chang.
- And many more...

Introduction

- Low-beta cavities (0.05 < $\beta = v/c < 0.6$) & applications
- Want to reduce the length and cost of low-beta accelerators.
- The approach is two-fold:
 - Substantially increase the performance of low- β cavities.
 - Geometry optimization for both processing and electromagnetics.
 - Quality control; apply/improve upon methods developed for β = 1 cavities
 - Optimize the accelerator lattice geometry for maximum real-estate gradient.
- Applications of reduced beta cavities.
- Results. How we got to the results?/What changed?
- Impact.

72.75 MHz, β = 0.077 Quarter-Wave Resonator

162.5 MHz, β = 0.11 Half-Wave Resonator

Low-Beta Cavity Applications

- Originally used as booster linacs fed by electrostatic accelerators: Karlsruhe, ATLAS @ ANL, , JAERI, ALPI @ INFN-Legnaro, U. of Canberra, etc.
- Applications Include:
 - Basic Science
 - National Security
 - Nuclear Medicine (Medical Isotope Production)
 - Waste Transmutation
 - Accelerator Driven Systems
- Projects:
 - ISAC II @ TRIUMF
 - Spiral2 @ GANIL
 - FNAL & Project-X
 - FRIB and ReA @ MSU
 - ATLAS Upgrades @ ANL
 - European Spallation Source, IFMIF,...
 - Many more (e.g., RISP, China ADS)

Quarter-Wave Resonator (QWR) 72 MHZ, β = 0.077 (Back)

Half-Wave Resonator (HWR) 325 MHZ, β = 0.285 (Front)

Applications

Pictures courtesy of R. Laxdall (TRIUMF), L. Ristori (FNAL), and G. Olry (IPNO)

Cavity Fabrication

- Learned a lot from TESLA/ILC development.
- The additions to the fabrication for the QWR are:
 - Final EP.
 - Electrostatic discharge machining.
 - Very careful attention to weld joint preparation.
 - Significantly more surface inspection and QA.
 - Reduced temperature of chemical polishing for all pre-weld preparations and for final polishing steps of the finished cavity, T < 30^oC.
 - 600°C bake to degas hydrogen.

Cavity Type	QWR
Freq. (MHz)	72.75
β	0.077
l _{eff} (cm, βλ)	31.75
E_{pk}/E_{acc}	5.2
B _{pk} /E _{acc} (mT/(MV/m))	7.6
QR _s (Ω)	26.4
R _{sh} /Q (Ω)	587

ANL Low-β Electropolishing Tool

72 MHz QWR Results - I

72 MHz QWR Results - II

How does this result compare to the best $\beta = 1$ cavities?

	72 MHz QWR	Really Good ILC 9-Cell
Peak Surface Magnetic Field	166 mT	175 mT
Peak Surface Electric Field	117 MV/m	84 MV/m

See: R.L. Geng, SRF11, Pg. 74.

Impact

- High Performance Resonators = Shorter Cheaper Accelerators.
- Work is proceeding to simultaneously increase the peak fields, quality factors and power coupler rating of reduced-beta cavities.
- Enables new applications where SC Linac technology was too expensive to support in the past:
 - Basic Science.
 - National Security.
 - Nuclear Medicine (Medical Isotope Production).
 - Waste Transmutation.
 - Accelerator Driven Systems.
- Improved techniques for all SC niobium accelerator cavities.
 - Weld preparations
 - EDM
 - Final EP after fabrication is finished

Future Application: Project - X @ FNAL (PXIE)

Cavity Type	HWR	SSR1	SSR2
Freq. (MHz)	162.5	325.0	325.0
β	0.11	0.22	0.47
l _{eff} (cm, βλ)	20.7	20.3	43.4
Operating Voltage (MV)	1.5/+2.0	2.0	TBD
E _{pk} /E _{acc}	4.6	3.8	3.4
B _{pk} /E _{acc} (mT/(MV/m))	5.4	5.8	6.6
QR _s (Ω)	48	84	82
R _{sh} /Q (Ω)	262	242	310
# of Cavities Required	8	8	TBD

HWR Prototype & Production Cavity Parts (ANL)

SSR1 Cryomodule (FNAL)

SSR1 picture courtesy of T. Nicol, FNAL. See: S. Nagaitsev et al, IPAC12, Pg. 3874. T. Nicol et al, PAC13, To Be Published ¹¹

Future Application: 1 GeV, 1 mA Proton Linac

- Low-beta real-estate gradients of >5 MV/m are achievable.
- This enables major cost reductions for the front end of future heavy-ion linacs.

Future Application - IV: Low- β in High- β Territory

Typical low- β cavity geometries do not have to be limited to low- β applications.

- 84.48 MHz, 2.5 MV QWR BNL Electron Gun for >35 mA: S. Belomestnykh MOP017
- High-β Spokes: J.R. Delayen, LINAC12 and PRST-AB to be published.
- RF Deflecting Cavities: S.U. De Silva and J.R.
 Delayen, PRST-AB 012004 & 082001 (2013).

Cavity Type	QWR
Frequency	84.48 MHz
Voltage	> 2.5 MV
E _{peak} @ 2.5 MV	39 MV/m
B _{peak} @ 2.5 MV	80 mT
R/Q	123 Ω
G	35 Ω

Conclusions

- New ion linac front ends greatly benefit from investment in low-beta resonators (Higher E_{acc} and Q).
 - Building from the development work done for the ILC.
 - New innovations for low-beta enhance this.
- There is no fundamental reason why low-beta resonators should not perform at the limits of Nb as do velocity of light structures.
 - Greater fabrication complexity is no excuse.

ODU, JLAB, Niowave β = 1 Double Spoke Resonator

Picture courtesy of J.R. Delayen (ODU/JLAB)