

LHC Crab Cavity Progress & Outlook

R. Calaga, E. Jensen, CERN SRF2013, September 27, 2013

> On behalf of the LHC-CC collaboration Special Ack: CERN, RF, EN & TE Groups

After present shutdown (2014-20) \rightarrow **60** fb⁻¹/yr (Higgs mass, spin, indications of strength & couplings to fermions & bosons)

HL-LHC Upgrade (2020-30) **250-300** fb^{-1}/yr A total of 1.2 km of the LHC to be upgraded

Elucidating the Higgs mechanism... (*i.e. from which grape the bottle is made of ?*)

To elucidate the Higgs mechanism all three main contenders use extremely demanding SCRF technology:

High Luminosity LHC: Accelerating RF and Crab Cavities (novel designs & precision timing)

A circular Higgs Factory collider: 10 to 20 GV of CW SCRF

A linear Higgs Factory collider, the ILC: 250 GV of pulsed SCRF

LHC Crab Scheme

SPS Test Module

Proof of principle demonstration with protons

433.5

175 258.5

VALVE DN100

175

VACUUM CHAMBER (transition) (85)

¢159

Important beam tests

VACUUM CHAMBER (2 tubes-16")

VSB VALVE

213

Technology validation, performance, stability Effects on the beam, cavity failures, radiation

090

SPS BA4 bypass

VACUUM CHAMBER

3000

900Mini

510

3.5m

3867

2131

Kick Voltage: 3.4 MV, 400 MHz

<150 mm B1 B2				
	RF Dipole	4-Rod	¹ ⁄ ₄ Wave	KEKB
	(ODU-SLAC)	(UK)	(BNL)	
Cavity Radius [mm]	140.5	140	139	550
Cavity length [mm]	535	383	344	375
Beam Pipe [mm]	84	84	84	305
Peak E-Field [MV/m]	33	34	38	34
Peak B-Field [mT]	56	79	70	98
$R_{_{ m T}}^{}/Q$ [Ω]	427	565	426	47
Nearest Mode [MHz]	577	371-378	582	~350

Geometrical

RF

Favorable distribution of peak surface fields (And compact due to quasi TEM or TE11-like)

x6 smaller R/Q

HOMs well separated

Same with other designs

All Prototypes in Bulk Niobium (2011-12)

Summary of Cavity Tests:

All cavities built by Niowave Inc. in bulk Niobium Surface treatment and first RF tests in the last 6 months 1 very good result, 2 moderate-to-good results

Only 4Rod cavity results are presented, see next talks for the other cavities

4Rod Prototype

Courtesy: Lancaster U, Niowave Inc.

End plates from solid ingot *Wire EDM pre-forms from ingot* Machine all surfaces

Outer shell in two-part sheet metal

Surface Treatment

Niowave

4Rod Cavity Treatment-Testing (Ack: BE-RF, TE-VSC, EN-MME)

 H_2 Degassing, CERN

600°C, 48 hrs

High Press Rinsing CERN

RF Measurements CERN-SM18

1st test performed Nov 2012 2nd test in Aug-Sep 2013 4Rod Cavity Qvs.V

Second test after light BCP (2013)

(Vacuum leak persists but better)

Ack: BE-RF-SRF/PM

4Rod: R vs.T Curve

Rs from the classical BCS fit \sim 45 $n\Omega$

Ack: BE-RF-SRF/PM

Enzo! I only answered maybe to your questions

Latest Cavity Designs

Waveguide or waveguide-coax couplers

Coaxial couplers with different antenna types

×

Coaxial couplers with hook-type antenna

COMPLEX FABRICATION

Dressed Cavity Concepts

Double Quarter Wave Tuner transverse plane

RF Dipole Longitudinal tuning

Cryostat Proposal for SPS

S. Pattalwar, T. Jones (4Rod Cavity)

Simplified cryostat for easy assembly/access/maintenance (LHC system would be a natural extension)

Cryostat Integration into SPS

CERN-EN-MME & Daresbury (4Rod Cavity)

Integration into SPS Bypass

Input Coupler Interface

E. Montesinos

Common Vertical Power Coupler interface imposed for all cavities

SPS type disk ceramic adapted for 62mm, 50Ω coxial coupler (with coax-waveguide transition WR2300)

Double-wall tube interface between cavity-vacuum vessel

RF Layout

E. Montesinos, P. Baudrenghien

Cryogenics Schematic for SPS

Two primary circuits 2 K and 80 K (main interface from the top)

Cavity operated at 2K saturated Helium

Power couplers and Cold/Warm transitions intercepted with LN2 at 80 K.

Power coupler intercept

Planning Overview

Final Implementation

Outlook

Today

A new path for the deflecting (SRF) world, very promising results Several emerging applications (colliders, light sources, linacs)

Near Future

Cryomodule(s) development & integration Reliability, transparency & precision RF control with SPS beam Potential for thin films for quench mitigation

Key challenge

To assemble this international puzzle together

A Last Thought

The klein bottle opener

3D-Printing of Nb-Cavities (?)

ODU RF-Dipole

SEE FRIOA04

Courtesy: ODU-Jlab

Low field multipacting easily processed did not reoccur

Achieved fields:

 $V_{T} = 7.0 \text{ MV } !!$ $E_{p} = 75 \text{MV/m}, B_{p} = 131 \text{mT}$ Expected $Q_{0} = 6.7 \times 10^{9} (10 \text{n}\Omega)$ Achieved $Q_{0} = 4.0 \times 10^{9} (35 \text{n}\Omega)$

Calculated Q_0 from SS flanges: 3.7×10^9

The slight higher residual resistance likely due to acid contamination

DQW 1st Cavity Test

SEE FRIOA02

Courtesy: BNL

Q is low, ~3×10⁸ (independent on the temp, expected 8.5×10⁹)

No Q-disease or not due to SS flanges

CW mode 0.96 MV (thermal load), pulsed mode reached 1.34 MV (200 W amplifier)

4Rod Cavity Q vs. V , Nov 2012

Overcoupled, $\beta \sim 4$

Multipacting of complex 3D geometries require sophisticated analysis (ex: ACE3P code)

4-Rod

No serious barriers RF conditioning sufficient (Courtesy Burt, Li, Wu)

Quarter Wave

Field Quality (Unusual for Cavities)

Like IR magnets, higher order components of the deflecting field important

mTm/m ⁿ⁻¹	MBRC	4-Rod	Pbar/DRidge	¹ ⁄4-wave
b ₂	55	0	0	0
b ₃	7510	1162	455	1076
b ₄	82700	84	24.6	92
b ₅	2.9×10^{6}	-2.29×10 ⁶	-2.1×10 ⁶	-0.1×10 ⁶
b ₆	52×10 ⁶	0	0	0
b ₇	560×10 ⁶	-638×10 ⁶	700×10 ⁶	7×10 ⁶

Precise control of voltage & phase

Main RF phase jitter $\Delta \phi = 0.005^{\circ}$ @400 MHz

For Crabs (
$$\theta c=570\mu rad$$
):
 $\Delta x_{IP} = 0.3\mu m (5\% \text{ of } \sigma_x^*)$

Independent control of ampl/phase Strong feedback across IP

