# European XFEL

## Estimation of Small Geometry Deviation for TESLA-Shape Cavities due to Inner Surface Polishing

A. Sulimov, G. Kreps, J. Sekutowicz Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, 22607 Hamburg, Germany.

### Abstract

Two well-known polishing methods are used for the inner surface cleaning of superconducting TESLA-shape cavities [1]: electro-polishing (EP) or buffered chemical polishing (BCP). The amount of removed material is relatively small and varies from 5 till 140 µm. The cavity is closed after polishing to prevent scratches or dust appearing on its inner surface. The estimation of the removed material amount is possible by different criteria, for example by comparison of weight before and after cleaning, or by the time - cleaning procedure duration. Both calculations could give us only approximate average value of the removed material amount. We describe the method for estimation of small geometry deviation basing on RF frequency measurements, which allows calculation of the different influence of surface treatment on the iris and equator areas

Some RF characteristics, like frequencies (Fo and Fpi), are very sensitive to geometry deviations. For radius changes at iris (Ri) and equator (Re) areas <u>calculated</u> values are:

$$\begin{bmatrix} dFo \\ dFpi \end{bmatrix} = S \begin{bmatrix} dRi \\ dRe \end{bmatrix},$$
(1)  
where  $S = \begin{bmatrix} 0.413 & -14.572 \\ 3.996 & -14.623 \end{bmatrix}$  MHz/mm.







Figure 1: Radius deviations at iris (dRi) and equator (dRe) areas

(a) Fo  $\approx$  1275 MHz (b) Fpi  $\approx$  1300 MHz Figure 2: TM010 E-Field distribution for zero (a) and pi-mode (b) Even small radius changes (about a few µm) can be found basing on the <u>measured</u> data of frequency changes, using:  $\begin{bmatrix} dRi \\ dRe \end{bmatrix} = A \begin{bmatrix} dFo \\ dFpi \end{bmatrix}, \quad (2)$ where  $A = \begin{bmatrix} -280.19 & 279.20 \\ -76.56 & 7.91 \end{bmatrix}$ µm/MHz.

| Parameters          | Units | Cavities after BCP |            |            |            |            |            |            |            |            |  |  |
|---------------------|-------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|--|--|
|                     |       | CAV00500           | CAV00506   | CAV00516   | CAV00516   | AC151      | AC152      | AC155      | AC155      | AC155      |  |  |
| Date                |       | 22.11.2012         | 08.10.2012 | 25.06.2013 | 27.06.2013 | 15.05.2012 | 25.05.2009 | 26.05.2010 | 03.04.2012 | 11.06.2012 |  |  |
| Fo (before BCP)     | MHz   | 1275.024           | 1275.206   | 1272.839   | 1272.839   | 1274.792   | 1271.613   | 1273.227   | 1274.983   | 1274.891   |  |  |
| Fo (after BCP)      | MHz   | 1274.763           | 1275.074   | 1272.620   | 1272.714   | 1274.710   | 1269.883   | 1272.920   | 1274.891   | 1274.118   |  |  |
| Fpi (before BCP)    | MHz   | 1299.686           | 1299.765   | 1297.765   | 1297.710   | 1299.685   | 1296.809   | 1297.520   | 1299.622   | 1299.553   |  |  |
| Fpi (after BCP)     | MHz   | 1299.518           | 1299.680   | 1297.574   | 1297.615   | 1299.628   | 1295.688   | 1297.308   | 1299.553   | 1299.052   |  |  |
| dFo                 | MHz   | -0.261             | -0.132     | -0.219     | -0.125     | -0.082     | -1.730     | -0.307     | -0.092     | -0.773     |  |  |
| dFpi                | MHz   | -0.168             | -0.085     | -0.191     | -0.095     | -0.057     | -1.121     | -0.212     | -0.069     | -0.501     |  |  |
| BCP (from TESLA DB) | μm    | 20                 | 15         | 10         | 10         | 5          | >10 +100   | 20         | 8          | 50         |  |  |
| dFpi  / 10 (kHz/mm) | μm    | 21                 | -9         | -19        | -10        | -6         | -112       | -21        | -7         | -50        |  |  |
| dR iris             | μm    | 26                 | 13         | 8          | 8          | 7          | 172        | 27         | 7          | 77         |  |  |
| dR equator          | μm    | 19                 | 9          | 15         | 9          | 6          | 124        | 22         | 6          | 55         |  |  |
| dRe / dRi           | %     | 71                 | 71         | 190        | 104        | 83         | 72         | 81         | 100        | 72         |  |  |
| Comments            |       | 2 x cold           | 2 x cold   |            |            | 2 x cold   | 2 x CTM    | 2 x CTM?   | 2 x cold   | 2 x cold   |  |  |

| Parameters         | Units | Cavities after EP |                          |            |            |            |            |                   |                   |                   |                       |            |
|--------------------|-------|-------------------|--------------------------|------------|------------|------------|------------|-------------------|-------------------|-------------------|-----------------------|------------|
|                    |       | CAV00500          | AC151                    | AC152      | AC153      | AC153      | AC155      | AC116             | CAV00001          | CAV00002          | AC114                 | AC114      |
| Date               |       | 21-28.<br>02.2012 | 31.05.2011<br>15.11.2011 | 17.11.2011 | 06.12.2010 | 09.05.2011 | 14.03.2011 | 14-16.<br>01.2008 | 02-06.<br>12.2011 | 07-09.<br>12.2011 | 18.07 -<br>01.08.2007 | 29.10.2007 |
| Fo (before EP)     | MHz   | 1274.590          | 1272.644                 | 1274.486   | 1272.551   | 1272.582   | 1273.305   | 1273.455          | 1276.431          | 1276.710          | 1273.176              | 1272.740   |
| Fo (after EP)      | MHz   | 1272.588          | 1272.341                 | 1274.373   | 1271.949   | 1271.969   | 1272.687   | 1272.143          | 1275.294          | 1275.636          | 1272.776              | 1272.338   |
| Fpi (before EP)    | MHz   | 1298.817          | 1297.350                 | 1299.638   | 1297.315   | 1297.607   | 1297.650   | 1297.838          | 1299.706          | 1299.865          | 1297.563              | 1297.308   |
| Fpi (after EP)     | MHz   | 1297.531          | 1297.198                 | 1299.573   | 1296.977   | 1297.267   | 1297.284   | 1297.052          | 1299.037          | 1299.238          | 1297.317              | 1297.071   |
| dFo                | MHz   | -2.002            | -0.303                   | -0.113     | -0.602     | -0.613     | -0.618     | -1.312            | -1.137            | -1.074            | -0.400                | -0.402     |
| dFpi               | MHz   | -1.286            | -0.152                   | -0.065     | -0.338     | -0.340     | -0.366     | -0.786            | -0.669            | -0.627            | -0.246                | -0.237     |
| EP (from TESLA DB) | μm    | 96+72+10          | 12+12                    | 12         | 13+48      | 48         | 48         | 90+50+10          | 72+48+10          | 72+48+10          | 12+12+24              | 48         |
| dFpi  / 8 (kHz/mm) | μm    | 161               | 19                       | 8          | 42         | 42         | 46         | 98                | 84                | 78                | 31                    | 30         |
| dR iris            | μm    | 202               | 42                       | 14         | 74         | 77         | 71         | 148               | 132               | 126               | 43                    | 46         |
| dR equator         | μm    | 143               | 22                       | 8          | 43         | 44         | 44         | 94                | 82                | 77                | 29                    | 29         |
| dRe / dRi          | %     | 71                | 52                       | 60         | 58         | 58         | 63         | 64                | 62                | 61                | 66                    | 62         |
| Comments           |       | 2 x CTM           | 2 x CTM                  | 2 x cold   | 2 x CTM    | 2 x CTM    | 2 x CTM    | 2 x CTM           | 2 x CTM           | 2 x CTM           | 2 x CTM               | 2 x CTM    |

#### Limitations

- Sensitivity matrixes S and A are found for TESLA shape cavities (with Ri = 35 mm, Re = 103.3 mm) and cannot be used for another geometries without corresponding corrections.
- Equation (2) can be used, if frequency changes dFo and dFpi are caused only by radius increase (due to surface polishing). Influences of others factors, like temperature or cavity filling, have to be excluded or strongly reduced.
- This method is based on the assumption that all changes are identical for all cavity cells. No other deformations, like elongations or eccentricity changes, are taking place.

#### Summary

- The method, based on RF measurement results, is being used successfully at DESY for 15 years.
- The most important aspects are:
  - it has a good correlation with other estimations of removed material for both inner surface polishing processes: BCP and EP;
  - it can be used in a "wide" range of radius changes: from 5  $\mu$ m till 200  $\mu$ m;
  - it allows us estimation of not only the average value of removed material from the cavity surface, but also for different regions: iris and equator areas.

#### **Referencies:**

- 1. D. Proch, "The TESLA Cavity: Design Considerations and RF Properties", Proceedings of the Sixth Workshop on RF Superconductivity, SRF93, CEBAF, Newport News, Virginia, USA, 1993, p.382
- 2. J. Sekutowicz, "2D FEM Code with Third Order Approximation for RF Cavity Computation", Proceed. Linear Accelerator Conference, Tsukuba, Japan, 1994, p. 284
- <u>http://tesla-new.desy.de/cavity\_database/summaries/</u>

Deutsches Elektronen-Synchrotron Helmholtz Association of German Research Centers 22607 Hamburg, Germany www.desy.de, www.xfel.eu



