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Abstract 

Acceleration of high-intensity, above ~10 mA, light-ion 
beams immediately after an RFQ requires a compact 
accelerating and focusing lattice with a high packing 
factor. We have developed a 6-meter long cryomodule for 
Project X at FNAL which satisfies this requirement.  The 
cryomodule has eight accelerating-focusing periods, in 
each period one 162.5-MHz SC HWR and one SC 
solenoid.  The solenoid has integral x-y steering coils, and 
a beam position monitor. The highly optimized EM 
parameters of the cavity were achieved with hourglass 
shaped inner and outer conductors.  All sub-systems 
inside the cryomodule are in advanced stages of 
prototyping and testing.  A similar concept has been 
developed for the design of several cryomodules for a 40 
MeV proton/deuteron 200 kW linac at SNRC (Soreq, 
Israel).  These cryomodules house two types of 176 MHz 
half-wave resonators and require only modest 
modifications of the Project X design.  This paper will 
discuss the status of the FNAL cryomodule design and 
sub-systems fabrication and its implications for future 
HWR cryomodules such as those for the SNRC project. 

INTRODUCTION 
Technologies for SC RF successfully developed for the 

ATLAS efficiency and intensity upgrade [1-3] are being 
applied in future high-power CW accelerators.  
Particularly, we are developing and building the first 
cryomodule with βOPT=0.11 HWRs for the Project X 
Injector Experiment (PXIE) at FNAL [4] and developing 
two cryomodules with different βOPT for the SARAF 
accelerator facility at SNRC [5]. In this paper we discuss 
the status of the SARAF and PXIE cryomodule 
development. 

In high-intensity light-ion accelerators, to reduce space 
charge effects, the fundamental frequency should be high 
as compared to heavy-ion linacs. SC HWRs are superior 
to QWRs at operational frequencies above ~150 MHz and 
optimal beta βOPT≥0.1. The fundamental frequency of 
Project-X is 162.5 MHz which is defined by the RFQ. 
Therefore we are developing a cryomodule with 8 HWRs 
for the acceleration of H-minus ions from 2.1 MeV to 11 
MeV [6]. Similar HWRs operating at 176 MHz are 
designed for the SARAF Phase II 5-mA proton and 
deuteron linac [7].  To increase the available accelerating 
voltage, the HWR shape is highly optimized reducing 

both BPEAK/EACC and EPEAK/EACC [8]. Optimization of the 
cavity shape was performed taking into account die-
forming fabrication technology available from industry 
[9]. The final cavity shape has tapered central and outer 
conductors as was discussed in an earlier publication [8]. 
The confidence in the proposed HWR design and 
predicted performance is based on the very successful 
design, construction and testing of conical QWRs for the 
ATLAS upgrade. The results of the EM optimization are 
summarized in Table 1.   

 

Table 1: HWR Performance Parameters 

Parameter PXIE SARAF 

Frequency, MHz 162.5 176 

Operating temperature, K 2 4 

Optimal beta, βOPT 0.11 0.089 0.16 

LEEF= βOPT, cm  20.7 15.2 27.3 

Aperture, mm 33 33 36 

Accelerating voltage, MV 1.7 1.0 2.1 

EPEAK/EACC 4.7 5.3 4.7 

BPEAK/EACC, mT/(MV/m) 5.0 5.6 5.6 

G = Q0RS,  48 40 60 

R/Q0,  272 231 296 

 

DESIGN AND FABRICATION OF HWR  
Below we discuss the mechanical design, fabrication 

status and plans for the RF surface processing for the 
PXIE HWRs. A similar approach is being applied to the 
SARAF HWRs. The primary scope of the mechanical 
design of the cavity and its helium jacket is identical to 
that reported in our previous publications [10]. Using 
HWRs in the PXIE requires two major sub-systems: a 15-
kW RF coupler and a slow tuner. A capacitive RF coupler 
[11] was built and is being tested with 10 kW RF drive 
power. The RF power is provided through a port 
perpendicular to the cavity beam axis (Fig. 1).  

A pneumatically actuated mechanical slow tuner which 
compresses the cavity along the beam axis is located 
outside of the helium vessel and will be attached to the SS 
flanges shown in Fig. 1 and 2. Simulations of the slow 
tuner were performed by applying a force to the SS 
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