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Abstract 

FRIB status is now in the CD-3a stage, and civil 
construction is ready to begin. CD-3b, which is FRIB 
accelerator system ready for construction, will be in mid-
2014. MSU has made or is making many developments 
before CD-3b. This paper will report summaries about 
these developments: Technology Demonstration 
Cryomodule (TDCM), fundamental power coupler (FPC) 
development, tuner development for HWR, magnetic 
shielding and superconducting solenoids, and Engineer 
Test Cryomodule (ETCM).  

TDCM 
The cryomodule (CM) is a key component for FRIB. 

FRIB CMs contain SRF QWRs (= 0.041, 0.085)/ HWRs 
(= 0.29, 0.53) and 8T superconducting solenoid coils for 
beam focusing [1]. They constitute both the bulk of the 
cryogenic load and a significant fraction of the accelerator 
cost. The proper design, production, test and validation of 
these CMs are critical to the success of FRIB.  Therefore, 
a decision was made to build a Technology 
Demonstration Cryomodule (TDCM), to operate at 2K, 
which is a 1/3 scale model of FRIB 0.53 CM as illustrated 
in Figure 1. 
   The TDCM includes two 0.53 half wave resonators 
(HWRs) and 8kW fundamental power coupler (PFC), 
mechanical tuner on each cavity, and one 9T solenoid 
package. The intent is to demonstrate: production, 
processing and testing of all the individual components, 
their assembly into a cold mass, the cold mass assembly 
into a cryomodule, the design and installation of 
supporting cryogenics, vacuum, controls, RF and safety 
systems, and finally a full RF test of the cryomodule 
under vacuum at 2K. 
   The first TDCM test was done in spring 2012 but the 
remnant magnetic field from the tuner components 
limited the cavity QO to lower value ~ 5E+9 at 2K. The 
second test was done in November 2012 after removing 
the most of the magnetic components in the tuner. 
However, a leaking LN2 line in the thermal shield limited 
the experiment. The third test took place after installing a 
supplementary LN2 cooling loop and produced successful 
results. High Q performance was demonstrated in the 
third TDCM experiment, as shown in Figure 2. Below are 
main achievements of these experiments.

 
1) Demonstrated successful 2K operation.  
2) Demonstrated FPC performance up to 8kW in the 

third test after 140OC baking 
3) Confirmed long term stable cavity operation even 

without tuners in the TDCM first test. 
4) High Q performance (1E+10 at Ep=15MV/m) at 2k 

after the removal of magnetized components from 
tuner. 

5) Successful 9T solenoid operation but in short term. 
6) Confirmed degaussing effect in the third test. 

The detailed reports of the TDCM tests are in [2] and [3]. 

 
Figure 1: TDCM cut-away graphic showing two HWRs, 
scissors-jack tuners straddling each HWR and a solenoid 
to the left. 

 
Figure 2: Summary of 4K and 2K Q0 measurements in the 
third TDCM test.  
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FPC DEVELOPMENT FOR FRIB HWR 
   TDCM experiment was successful and many lessons 
were learnt at MSU. R&D of multipacting (MP) free FPC 
is one of them. In the third TDCM experiment, the FPC 
finally achieved 8kW FRIB specification after 140OC 
baking, but persistent multipacting conditioning with all 
phases of the standing wave was needed. The RF 
conditioning effort needed more than 16hrs, which is a 
time consuming process. In the FRIB operation this might 
be an issue.  
   Multipacting in the FPC was analysed in detail. MP free 
FPC design was developed for FRIB HWRs [4]. Figure 3 
shows the comparison of the designs between TDCM 
FPC and new MP free FPC. Figure 4 shows the MP 
performance. The new design has no MP on cavity 
resonance and 1/10 of the TDCM FPC on cavity detuned. 
The key point of this design is increased impedance in the 
coaxial wave guide from 50 to 75 to push MP away. 
The fabrication of new FPC is under way. 

 
Figure 3: Comparison of design between TDCM FPC 
(left) and new MP free FPC (right). 

 
Figure 4: Comparison of MP between the TDCM FPC 
and new MP free coupler. 

TUNER DEVELOPMENT FOR FRIB 
HWRS 

Baseline Change with HWR Tuner 
The second lesson learnt from TDCM is about tuners. 

Scissors-jack tuner (Figure 5 left) was the original 
baseline for FRIB HWR’s mechanical tuner. However, 
this tuner uses magnetized materials (420SS) at the flex 
pivots and results in high remnant field ~ 1G in the 
cryomodule [2]. The replacement to nonmagnetic 

components is not cheap. High Q was limited in the first 
TDCM experiment. In the second TDCM experiment, the 
magnetic components were mostly taken off. However, Q 
measurement was impossible in the second test due to a 
leaking LN2 thermal shield line. The third test after 
installing a supplementary LN2 cooling loop was 
successful. High Q performance of the cavity was 
demonstrated as already shown in Figure 2.  
    This tuner operation was very noisy in the first TDCM 
experiment. In addition, this tuner system has a weakness. 
There is no way to perform offline tests in the current 
vertical test system used for cavity certification. MSU has 
now decided to apply the ANL type pneumatic tuner 
showed in Figure 5 right, which is very well established at 
ANL. This tuner utilizes Helium pressure to actuate for 
cavity tuning mechanism. This pressure causes the 
bellows to expand and push down on the frame and pulls 
on the cable attached to the tuning arms. 

Figure 5: The baseline change from the scissors-jacket 
tuner to ANL type pneumatic tuner for FRIB HWRs. 

Prototyping of ANL Type Pneumatic Tuner 
   This pneumatic tuner was prototyped as shown in 

Figure 6 and bench tested at room temperature and in a 
Dewar at cryogenic temperatures [5]. Figure 7 shows one 
example result, with a tuning range up to 70psi of Helium 
gas pressure. Tuner speed was also measured at cold 
temperature and found to be 0.5 kHz/s. The performance 
is summarized in Table 1. 

 
Figure 6: Prototyped pneumatic tuner on a=0.53 HWR. 
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Figure 7: Tuning range experiment result, Helium 
pressure up to 70 psi. vs. cavity frequency shift at warm 
and cold temperature. 

 
Table 1: Test Result of the Pneumatic Tuner 

Parameter Warm Test Cold Test
Frequency Shift 

(kHz) 35.6 23.8

df/dx (kHz/mm) 57.8 -
df/dF (Hz/N) 
[Calculated] 3.3 2.22

dF/dx (kN/mm) 
[Calculated] 17.2 -

df/dP (kHz/psi) 
(Piston) 0.52 0.34

 
Tuner Operation Demonstration with Cavity at 
2K 
   This tuner has been operation tested with a HWR at 2K 
and demonstrated the cavity stable operation under the 
tuner operation. Figure 8 shows the cavity phase locking 
and the amplitude stability by the tuner operating. When 
cavity RF frequency was actively modulated around at 
0.7Hz/s within a bandwidth, both phase and field 
amplitude of the cavity nicely locked. 

 
Figure 8: Demonstration of the tuner operation with a 
HWR at 2K. 

CM LOCAL MAGNETIC SHIELD 

Local Magnetic Shielding for FRIB CMs 
FRIB CM is long and needs thicker -metals (3.2mm) 

in global shielding scheme to attenuate the earth’s 

magnetic field to less than the FRIB specification of 
15mG [6]. The local shield scheme, shown in Figure 9, 
allows for such shielding with 1.0mm thick cryomagnetic 
materials like Cryoperm or A4K [6].  Another benefit of 
this scheme is more reliable shielding performance 
against fringe fields from the SC solenoid coil located in 
the vicinity of the cavities. From the shielding 
performance and cost optimization point of view, FRIB 
finally chose local magnetic shield scheme with a 
contingency option for global shield. 

Figure 9: Local shielding scheme to be applied for FRIB 
cryomodules. 8T SC solenoid coils are located between 
cavities (green components).  

Magnetic Shield Material Study  
   A cryogenic magnetic shielding material (Cryoperm or 
A4K) has to be used in this scheme, however these 
materials have very low magnetic saturation behaviour at 
below 10 G [7]. The shield will be exposed to a fringe 
field of about 130G under 8T solenoid operation. The 
magnetic shield performance is worrisome for such high 
magnetic field exposure. Magnetic material 
characterization is important for the local magnetic shield 
to be a success. MSU has started a magnetic shielding 
material characterization program [8]. Here, the AC 
magnetic permeability is measured and its frequency 
dependence investigated. The estimated DC magnetic 
permeability from these measurements are shown in 
Figure 10. 

Figure 10: Frequency dependence of magnetic 
permeability at room temperature and cryogenic 
temperatures. 
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