"What is the best treatment for highest Q and medium gradient for CW applications?

- For CW applications the gradient becomes cost limited by the dynamic heat load.
- The cost of refrigeration for a several GeV CW accelerator becomes substantial, so that the optimum gradient for lowest cost is likely to be in the 15 – 20 MV/m range.
- Higher Q's will likely drive the optimum gradient higher and the cost lower.
- Hence the goal of the discussion is to help identify the best treatment that will give the highest Q at medium gradients.
- The frequency for the accelerator also has a bearing on the dynamic heat load, since BCS resistance decreases as f^2, but the shunt impedance (per unit length) decreases with f. But we wont have time discuss low frequency results...sorry

Our Panel of Experts

- Alexander Romanenko Fermilab
- Anna Grasselino Fermilab
- Mathias Liepe Cornell
- Pushapati Dhakal Jlab
- Detlef Reschke DESY
- Julia Vogt BESSY

Guiding Questions

- Lots of information presented in previous talks here
 - Put together as much as possible
- Surface Treatment
 - 1) Is BCP or EP the superior treatment for highest Q?
- 2) Does tumbling help to reach higher Q's ?
 (above the statistical spreads).
- Material
 - 3) Does large grain material give higher Q's
 - (above the statistical spreads).

120 C Bake

- 4) It is well known that 120 C bake lowers the BCS resistance component. But it also raises the residual resistance (spoiling the oxide).
- 5) Is baking recommended for high Q?
 - Can the residual resistance be restored by HF rinsing?
 - How does 120 C baking affect the medium field Qslope?
 - How does HF rinsing affect the medium field Qslope?

Medium Field Q-Slope

- 6) What is (are) the cause (s) of the medium field Q-slope (MFQS)?
 - Is it simple a thermal effect
- 7) Which component of the resistance increases with field during MFQS?
 - BCS or residual?

High Temperatures and New Treatments

- 8) Does higher temperature (800 C and above) annealing raise Q ?
- 9) Are there any new treatments that give higher than standard BCS Q?
- Include promising results from new materials such as Nb3Sn.

Preserving the Q in the CM

- 10) What are the precautions/procedures to maintain higher Q's from vertical test to cryomodule?
- DC magnetic field shielding, avoiding flux trapping due to thermo currents etc.

1) Is BCP or EP the superior treatment for highest Q?

• When both get 120 C to minimize BCS resistance

"BCS" resistance

Residual resistance

- Is BCP or EP the superior treatment for highest Q?
 - EP gives less field dependence of the residual => higher Q at the operating gradient
 - however if it is due to trapped flux may be mitigated by the slow cooldown/flux expulsion techniques
 - If BCS-dominated (e.g. 4.2K) does not matter much

Does tumbling help to reach higher Q's ? (above the statistical spreads).

2) ANNA

Marginally – note: tumbled cavities go through extra 800C cycles

2) Does tumbling help to reach higher Q's ? (above the statistical spreads) So far even with mirror finish surface (no chemistry post tumbling) no Q improvement observed

Dead layer due to nanoroughness? Room for Rs improvement if surfaces are mirror smooth (ie <50 nm roughness)?

- Cavity tumbled with last steps (mirror finish only)
 significantly smoother surface, but no
 improvement found
- Notice also HFQS at same onset

‡ Fermilab

3) Does large grain material give higher Q's (above the statistical spreads).

Denis Kostin, Felix Schlander, Detlef Reschke

Hot Topic: What is the best treatment for highest Q and medium gradient for CW applications?

XFEL Vertical Test of LG Cavities at DESY

- Based on 11 LG-Cavities
- Only 4 LG Cavities with EP+
- Number of entries/data point decreasing with increasing gradient
- Statistical error shown

Denis Kostin, Fellx Schlander, Detlef Reschke

SRF 2013, September 22-27, 2013

Jlab: Pushpati

Eacc [MV/m]

Anna: Does large grain material give higher Q's (above the statistical

FNAL analysis of DESY data by O. Melnychuk, see TUP100

- DESY data for ILC 9-cells
 - <Q₀@16 MV/m>=1.9E10 @2K
- DESY LG material, same cavity type
 <Q₀@16 MV/m>=2.1E10 @ 2K
- Very small difference between fine- and large-grain material in VT
- 60% lower heat load in CM (LG vs FG) quoted at this workshop consistent with lower trapping efficiency of LG
- BUT, if attention is paid to CM cooldown and shielding (see HZB and Cornell), no clear advantage of large grain vs fine grain
- In summary, LG is just less prone to gain residual (when things are not done right)

120 C Bake/HF Rinse

- 4) It is well known that 120 C bake lowers the BCS resistance component. But it also raises the residual resistance.
- 5) Is baking recommended for high Q? Can the lower residual resistance be restored by HF rinsing? How do the answers depend on frequency choice?
 - How does 120 C baking affect the medium field Qslope?
 - How does HF rinsing affect the medium field Q-slope?

120C/HF combination...Alexander

- Is baking recommended for high Q?
 - Depends on the frequency, T, at T=2 K, 1.3 GHz helps marginally, 650 MHz, 325 MHz – does not help, makes worse, e.g. for single spokes (325 MHz) instead of 4 nOhm (unbaked) we get 6-8 nOhm
 - However always helps at 4.2K
 - If combined with the HF rinse – benefits all frequencies
 - For new doping treatment
 no
- Can the lower residual resistance be restored by HF rinsing?
 - Yes, 120C baking-induced increase can be negated

- How does 120 C baking affect the medium field Q-slope?
 - Increases Rbcs(B) slope
- How does HF rinsing affect the medium field Q-slope?
 - Decreases residual resistance contribution -> makes slope in Rbcs(B) more apparent

Medium Field Q-Slope

- 6) What is (are) the cause (s) of the medium field Q-slope (MFQS)?
 - Is it simple a thermal effect
- 7) Which component of the resistance increases with field during MFQS?
 - BCS or residual?

Role of thermal feedback...Alexander

 What is (are) the cause (s) of the medium field Q-slope (MFQS)? Is it simply a thermal effect, i.e. the RF surface temperature rises, so the BCS resistance increases, which continues in a feedback loop?

– NO

 $\Delta Rbcs = Rbcs(Trf) - Rbcs(Tbath) - "thermal feedback"$

- Which component of the resistance increases with field during MFQS, the temperature independent part (residual) or the temperature dependent part (the BCS part?)
 - In cavities without 120C bake primarily residual
 - With 120C bake both

High Temperatures and New Treatments

- 8) Does higher temperature (800 C and above) annealing raise Q ?
- 9) Are there any new treatments that give higher than standard BCS Q?
- Include promising results from new materials such as Nb3Sn.

ANNA 8) Does higher temperature (800 C and above) annealing raise Q ? Yes, if annealing is the last processing step

A.Grassellino et al, http://arxiv.org/abs/1305.2182

- EP + 800C 2 hrs + 20 micron EP + C higher Q
- Systematically low R₀ ~ 1nΩ, R_{BCS} of a mild baked cavity (more room T venting studies needed)
- Extra cost savings from skipping the post furnace chemical processing

9) Are there any new treatments that give higher than standard BCS Q? Yes, the bake in nitrogen or argon

- Total surface resistance of 3 n Ω @ 17 MV/m, 1.3 GHz, 1.8K
- Rbcs ~ 4 n Ω @ 2K and 1.5 n Ω @ 17 MV/m, 1.3 GHz
- Compare to std Rbcs ~ 9 n Ω @ 2K and ~ 4-5 n Ω @ 1.8K
- <u>Currently, best treatment for reproducible high Q at mid field at 1.3</u>
 <u>GHz (and 650 MHz,too, see TUP050)</u>
 ENERGY

Liepe: Message 1

High temperature heat treatments can do good things:

- Low residual resistance (sometimes)
- High T_c / large energy gap
- Small mean free path

Bake in low pressure N₂ atmosphere might help to optimize BCS parameters.

Example 1: Long 1000 C Heat Treatment

After additional Chemistry

Material Parameters

Property	1000°C Bake	80 μm BCP	280 μm Total BCP	120°C Bake
T _C [K]	9.3 ± 0.9	9.3 ± 0.9	9.3 ± 0.9	9.5 ± 0.9
Δ/k_BT_C	1.78 ± 0.02	1.78 ± 0.02	1.79 ± 0.1	1.96 ± 0.2
ℓ [nm]	8 ± 2	8 ± 2	7 ± 2	6 ± 2
$R_{res}[n\Omega]$	0.36 ± 0.08	1.2 ± 0.3	1.3 ± 0.3	5 ± 1.2
κ_{GL}	7 ± 1	7 ± 1	8 ± 1	10 ± 2
$B_{c1}[mT]$	45 ± 14	44 ± 14	42 ± 15	36 ± 16

- \Rightarrow Low residual resistance
- \Rightarrow Small mean free path
- \Rightarrow 120C bake increased energy gap

Example 2: 800 C Heat Treatments with and without

- N2 bake: 800C for 3 hours + 10 min with 10^{-2} torr N₂
- No strong field dependence up to 20 MV/m

800 C Heat Treatments with and without low Pressure

• N₂ treatment significantly lowered BCS resistance

Material Parameters

Property	100 µm EP	800C	800C+ 5 μm EP	N ₂ Treatment + 7 μm EP
T _C [K]	9.2 ± 0.9	9.1 ± 0.9	9.1 ± 0.9	9.2 ± 0.9
$\Delta/k_{\rm B}T_{\rm C}$	1.75 ± 0.02	2.08 ± 0.03	1.97 ± 0.03	2.01 ± 0.02
ℓ [nm]	14 ± 4	2.4 ± 4	3.1 ± 0.9	5 ± 1
$R_{res}[n\Omega]$	9 ± 2	12 ± 3	4 ± 1	9 ± 2
K _{GL}	5.0 ± 0.8	22 ± 5	17 ± 5	11 ± 2
$B_{c1}[mT]$	58 ± 12	22 ± 19	26 ± 18	34 ± 16

• N₂ treatment improved BCS parameters for high Q₀

Does higher temperature raise Q? JLAB - Pushpati

Recent test on cavities heat treated in the temperature range 800-1600C showed the dramatic improvement in Q_0 mostly due to the reduction of residual resistance and enhanced gap.

Paper TUIOC04, SRF 13 PRSTAB, 16, 042001 (2013) SUST 23, 102001 (2013)

In 70-80's high Q cavities were heat treated the temperature much higher than 800 C.

With a proper furnace, chemistry after the high temperature heat treatment is not necessary.

Low temperature baking may not be necessary for the medium field Q, since it tend to increase the residual resistance.

Message 2

Alternative materials have greatest potential for high Q_{0}

Sam's Nb₃Sn cavity is the first accelerator cavity made with an alternative superconductor that outperforms Nb at usable gradients!

Sam's Nb₃Sn Cavity

Preserving the Q in the CM

 10) What are the precautions/procedures to maintain higher Q's from vertical test to cryomodule? DC magnetic field shielding, avoiding flux trapping due to thermo currents etc.

European XFEL

Hot Topic: What is the best treatment for highest Q and medium gradient for CW applications? precautions/procedures to maintain higher Q's from vertical test to cryomodule

- -
- Clean Room assembly of the cavity parts. Mounting of the string in the clean room. Using the main coupler with two RF windows to allow the clean coupler installation on the cavity.
- Clean UHV conditions
- Using the cavity magnetic field shield (µ-metal). The shield is mounted on the LHe tank and provides enough shielding to keep the vertical test results within measurement error margins.

Residual losses are often dominated by trapped flux

We know of three ways to reduce this:

- 1) Minimize the pinning centers , i.e. don't give the magnetic flux a chance to get trapped.
- 2) Provide conditions for the magnetic flux to leave the material.
- 3) Don't generate new flux by avoiding temperature gradients.

1) MINIMIZE THE PINNING CENTERS

#	Crystal structure	Treatment	Fraction of trapped flux			
1	Polycrystalline	None	100%			
2	Polycrystalline	BCP	100%			
3	Polycrystalline	BCP + 800°C bake out	$(83.1 \pm 0.8)\%$			
4	Single crystal	ВСР	$[(72.9 + 0.1 \ln v) \pm 0.8]\%$			
5	Single crystal	BCP + 800°C bake out	[(61.6 + 1.3 lnv) ± 0.8]%			
6	Single crystal	BCP + 1200°C bake out	$[(42.1 + 0.13 \ln v) \pm 0.6]\%$			
\rightarrow	→ Aull, Kugeler and Knobloch, PRSTAB 15, 062001 (2012)					

depends on cooling rate $v = \Delta T / \Delta t$

Consistant with results that Q's of large grain cavities are greater. For example W. Singer, MOIOA03: "Large grain cavities on average have 60% higher Q"

→ Use large grain and heat treated material!

2) PROVIDE CONDITIONS FOR THE MAGNETIC FLUX TO LEAVE THE MATERIAL

3) AVOID GENERATION OF FLUX

---> Avoid temperature gradients!

Anna: What are the precautions/procedures to maintain higher Q's from vertical test to cryomodule?

Prevention of hydrogen reabsorption post furnace treatment is crucial

Knobloch and Padamsee, 8th Workshop on RF Superconductivity, Padova, Italy. SRF 981012-12

15 14 13 TB9AES011D 12 R Δ 11 R_{BCS}(2K) Δ 10 TB9AES011E R_{res} 9 R_{BCS}, R_{res} [n Ω] R_{BCS}(2K) 1 쟢 I H 四 HĀH HA-35 65 70 5 20 25 30 40 45 50 55 60 B [mT]

Cavities with some amount of hydrogen worsen at second cooldown

What are the precautions/procedures to maintain higher Q's from vertical test to cryomodule?

Shielding and cooldown are crucial: R0 due to trapped flux worsens at operating gradient

Benvenuti, Calatroni et al, Proceedings of the 1997 Workshop on RF Superconductivity, Abano Terme (Padova), Italy

Mathias - Cornell Record-High Q₀ in Cryomodule

- HTC-1: Follow vertical assembly procedure as closely as possible
- HTC-2: Include side mounted, high power RF input coupler
- HTC-3: Full cryomodule assembly-high power RF input coupler and beam line HOM loads

- Higher Q₀ in cryomodule than in vertical test!
- Difference: residual resistance

More details: See Nick Valles' poster MOP071 and Ralf's talk on Friday HZB thermal cycling work: TUIOA01

HTC: Why higher Q₀ than in Vertical Test? • Excellent magnetic shielding (two layers)

- Very small thermal gradients across cavity during cool down
 - Cavity temperature gradient ~0.2 K
 - Cool down rate through T_c : ~ 0.4 K/hr

6 Cernox temperature sensors mounted on top and bottom of end cells and center cell

