Large Grain Cavities: Fabrication, RF results and Optical Inspection

Sebastian Aderhold DESY

15th International Conference on RF Superconductivity

July 27, 2011 Chicago

IHEP

- Two large grain low-loss shape cavities IHEP1, IHEP2
- IHEP1:
 - No HOM couplers
 - Initial treatment: CBP, BCP, hydrogen outgassing, BCP
 - 1st test (KEK,July 2010): 20 MV/m limited by quench with FE
 - 2nd test at JLab
- IHEP2:
 - Built with full end-groups
 - EBW to be finished in November

Details in talk by Jiyuan Zhai's talk

19#9: first ICHIRO LG 9-cell at KEK

Unbalanced removal by vertical BCP

19#9: first ICHIRO LG 9-cell at KEK

I9#9

w/o end group

Horizontal BCP yielded more uniform removal Gradient remained the same

KEK: EBW from cavity inside

I9#10 and I9#11 produced with inner EBW

Comparison: Outer ↔ Inner EBW

Number of "visible defects" decreased by factor 5 from $I9#9 \rightarrow I9#10$

Cavity PKU2

- TESLA-type, fabricated at Peking University in 2009
- Tested at Jlab in 2010/2011
- 100 µm BCP, 10 hrs at 600C, 80 µm BCP
 - RF test: limited by quench at E=19.5 MV/M with Q_0 =9E9
- Optical inspection: large number of pits near EBW
 seam
- 2 hrs at 800C, 30 µm EP, 48 hrs at 120C
 - RF test: limited by quench at E=22.4 MV/m with Q₀=2E10

Cavity PKU2

Investigation of PKU-LG1 at FNAL

Features found at multiple locations: BCP stains BCP etching pits Weld Pits

Steep grain boundaries

P. Kneisel, "Progress on Large Grain and Single Grain Niobium – Ingots and Sheet and Review of Progress on Large Grain and Single Grain Niobium," in *Proc. of 13th Workshop on RF Superconductivity*, Beijing, China, 2007.

Grain boundary in PKU-LG1

The height of step on A-A': 60µm The height of stp on B-B': 25µm

A result from surface scanning profilometer

Field enhancement

TABLE 1: Field enhancement factor of cavity defects		
Cavity	Field enhancement factor	Maximum H field [mT]
TB9ACC017	2.2	54.1
AES001	1.5	96.8
TE1AES004	1.2	168.0
PKU-LG1	1.6	189.2

Magnetic field enhancement model

JLAB: Cavity JLAB-LG#1

- Fabricated from CBMM material
- First test after BCP-treatment: 20 MV/m with Q0=8E9
- Improved to 30 MV/m with Q0>1E10 by 35 µm EP + 120°C bake
- Repaired part of equator weld in center cell identified as quench location by T-mapping and optical inspection
- Local grinding and 85 µm EP were done at KEK
- Vertical test at Jlab:
 - Improvement of repaired cell, overall degradation of cavity
- Final test:
 - Hydrogen outgassing, 30 µm EP, 120°C for 48 hrs
 - Limited by quench at 24 MV/m with Q0>1E10

Initial and final performance JLAB-LG#1

Comparison of Q0: LG \leftrightarrow FG

SRF2011 Chicago

S. Aderhold, DESY

Comparison of Q0: LG \leftrightarrow FG

Cavities AC151-AC158

- Material production in R&D framework of DESY and W.C. Heraeus
- Wire sawing of discs from ingot
- Central crystal >150 mm
- Different orientation of central crystal
 - AC151-AC153: (100)
 - AC155-AC157: (221)
 - AC154, AC158: (211)
- AC155, AC156: grinding of grain-boundaries after deep-drawing

Influence of crystal orientation

Averaged deviation from "ideal half cell" after deep-drawing

(100) [plane parallel to sheet surface] yields most deviation

AC151-AC158: BCP performance

Example: Grain boundary in AC158

Quench-sites inspected in AC151-AC158 so far: no "obvious defects", just etching pits (all over the cavity) and grain boundaries

After BCP: sharp edges

After EP: smoothed edges

SRF2011 Chicago

Summary

- Increasing numbers of 9-cell large grain cavities are being built
- Large grain 9-cells give higher Q-values than comparable fine-grain cavities
- BCP-treatment yields stable gradients
 - 25-30 MV/m in the DESY-batch
- Highes gradients with EP
 - AC155 and AC158 exceed 45 MV/m
- Important role of grain-boundaries?

Many thanks to:

L. Cooley, R. L. Geng, J. Hao, D. Reschke, K. Saito, X. Singer, G. Wu and J. Zhai for providing me with input for this talk!

And thank you for your attention!