

15th International Conference on RF Superconductivity, Chicago, United States

Review of RF Sample Test Equipment and Results

Work supported by the German Doctoral Students program of the Federal Ministry of Education and Research (BMBF) Acknowledgements: Wolfgang Weingarten and everybody from CERN BE/RF and TE/CRG Carsten Welsch (University of Liverpool, Cockcroft Institute, Daresbury) Ernst Haebel (CERN)

1. Illuminating a superconducting Sample by RF

- Small samples can be exposed to RF using a pill box cavity with demountable endplate
- Three possible techniques
 - Replacement
 - Thermometry
 - Calorimetric

1. Illuminating a superconducting Sample by RF

- Small samples can be exposed to RF using a pill box cavity with demountable endplate
- Three possible techniques
 - Replacement
 - Thermometry
 - Calorimetric

1. Illuminating a superconducting Sample by RF

- Small samples can be exposed to RF using a pill box cavity with demountable endplate
- Three possible techniques
 - Replacement
 - Thermometry
 - Calorimetric

THPO050

$$P_{RF} = P_{DC,1} - P_{DC,2} \approx 1/2 R_{Surface} \int_{Sample} H^2 dS$$

$$R_{Surface} = \frac{2(P_{DC,1} - P_{DC,2})}{\int_{Sample} H^2 dS}$$

2/11

2. TE_{011}/TE_{012} Cavity from CEA Saclay and IPN Orsay^{1,2}

Modified cavity recently comissioned²

¹ M. Fouaidy, P. Bosland et al. - EPAC 2002, Paris, France ² G. Martinet et al. – SRF 2009, Berlin, Germany

2. TE_{011}/TE_{012} Cavity from CEA Saclay and IPN Orsay¹

- Systematic sample studies
- Correlation with surface properties
- Nb film residual surface resistance increases with the substrate roughness

d57

Tobias.Junginger@cern.ch

¹ M. Fouaidy, P. Bosland et al. - EPAC 2002, Paris, France

3. Sapphire loaded cavity at JLAB^{3,4}

Tobias.Junginger@cern.ch

³ L. Phillips et al. – SRF 2005, Ithaca, United States ⁴ B. Xiao et al. – Rev. Sci. Instrum. 82, 056114 (2011)

3. Sapphire loaded cavity at JLAB⁴

Derive material parameters from surface impedance measurements
Δ/kT_c=1.842, λ(0 K) =45.3 nm, London penetration depth=36.1 nm, coherence length=51.3 nm, mean free path=256 nm, R_{res}=1.54 μΩ for Niobium Sample

Results on MgB₂: THPO048

Tobias.Junginger@cern.ch

⁴ B. Xiao et al. – Rev. Sci. Instrum. 82, 056114 (2011)

Solid Curve:Prediction from Vortex Line Nucleation ModelDashed Curve:Prediction from Ginzburg Landau Model

5. Comparison of the Different Devices

	TE _{011/012} Cavity	Sapphire loaded	Quadrupole
<i>f</i> [GHz]	4/5.6	7.5	0.4/0.8/1.2
Sample diameter <i>d</i> [cm]	12	5	7.5
B _{max} [mT]	40	14 (Amplifier Power)	60 (Quench)
Resolution at 5 mT from minimal detectable heating [nΩ]	1.43 ²	1.24	0.44

Tobias.Junginger@cern.ch

² G. Martinet et al. – SRF 2009, Berlin, Germany

⁴ B. Xiao et al. – Rev. Sci. Instrum. 82, 056104 (2011)