# Multilayer coating of superconducting cavities: challenges and opportunities

#### Alex Gurevich

Dept. Physics, Old Dominion University, Norfolk, VA, USA

15th SRF Workshop, Chicago, 2011

#### **TSRF** opportunities

- Best Nb cavities have already reached the breakdown fields H<sub>p</sub> close to H<sub>c</sub> ≈ 200 mT of Nb (Jlab, Cornell, KEK).
- TFML coating offers a possibility to break the Nb monopoly, increasing H<sub>p</sub> beyond 200 mT up to H<sub>c</sub> = 0.5 - 1T of the coating material
- Higher T<sub>c</sub> thin film coating may result in a great reduction of the BCS surface resistance,

$$R_s = \frac{A\omega^2}{T} exp\left[-\frac{1.8T_c}{T}\right] + R_i$$

- TFML with T<sub>c</sub> > 18K may offer a possibility to work at 4.2K at the same level of the surface resistance and Q(H) curve.
- Reducing size, cost and power consumption of LINACs

# Challenges

- Tricky choice of the optimum TFML materials among lots of good-looking candidates
- Dealing with chemically more complex materials with coexistence of superconductivity with competing states (close to AF or structural phase transitions) and unconventional pairing symmetries.
- Impurities can be more damaging than they are in Nb. Understanding the pairbreaking mechanisms by impurities in strong RF fields.
- Higher T<sub>c</sub> superconductors have shorter coherence length stronger current-limiting effect of grain boundaries than in Nb.
- Overheating in S-I-S-I multilayers?
- RF band decoupling in multiband superconductors (MgB<sub>2</sub>)

#### Lots of materials to play with



#### **Possible TFML materials**

|                                   |                | -                  | -               | _                   |      | _     |       |                                       |
|-----------------------------------|----------------|--------------------|-----------------|---------------------|------|-------|-------|---------------------------------------|
| Material                          | T <sub>c</sub> | H <sub>c</sub> [T] | H <sub>c1</sub> | H <sub>c2</sub> [T] | λ(0) | Δ     | 5.2   |                                       |
|                                   | (K)            | <b>~</b>           | [mT]            | 02                  | [nm] | [moV] |       | • Pb.7Bi.3                            |
|                                   |                |                    | []              |                     |      |       |       |                                       |
| Nb                                | 92             | 0.2                | 170             | 04                  | 40   | 15    | 4.8-  |                                       |
|                                   | •              | •                  |                 | ••••                |      |       |       |                                       |
| B. K. BiO.                        | 31             | ~0 44              | 30              | 30                  | 160  | 4 4   |       | Hg $\sim$ Nb <sub>3</sub> Ge(1) $-$   |
| $D_{0.6} \times 0.4 D \times 0.3$ | 51             | ~0.77              | 50              | 50                  | 100  |       | NB IC | Pb Nb <sub>3</sub> Sn                 |
|                                   |                |                    |                 |                     |      |       | 4.4   | $/ Nb_3AI(3) =$                       |
| Nh Sn                             | 10             | 0.5                | 40              | 20                  | 05   | 2.4   | 1     | Nb3Ge (2) / Nb3 AI(2)                 |
| 1032U                             | 10             | ~0.5               | 40              | 30                  | 05   | 3.1   |       | V <sub>3</sub> Go                     |
|                                   |                |                    |                 |                     |      |       |       | •-8-fn                                |
| NbN                               | 16.2           | ~0.23              | 20              | 15                  | 200  | 2.6   | 4.0   | 6-Nb Pb-+H₫, Pb,50Bi,50 4.50-         |
|                                   |                |                    |                 |                     |      |       |       |                                       |
| MgB <sub>2</sub>                  | 40             | ~0.32              | 20-60           | 3.5-60              | 140  | 2.3;  |       |                                       |
|                                   |                |                    |                 |                     |      | 7.1   | 7.0   | V Sn No <sub>3</sub> Ge - 10331 -4.40 |
|                                   |                |                    |                 |                     |      |       | 3.6   | • G0 <sup>#</sup>                     |
| Ba, K, Fe,As,                     | 38             | ~0.5               | 20              | >100                | 200  | >5.2  | A     |                                       |
|                                   |                |                    |                 |                     |      |       | Ó     | 0.04 0.08 0.12 0.16 0.20 0.24         |
|                                   |                |                    |                 |                     |      |       |       | 'C' "In                               |

High-T<sub>c</sub> d-wave cuprates are SRF unsuitable ( $R_s \propto T^2$  instead of  $R_s \propto exp(-\Delta/T)$ Large s-wave gap (good for SRF) is usually accompanied by low H<sub>c1</sub> (bad for SRF)

# **Boost of H**<sub>c1</sub> by multilayer coating



 $H_1 = 50 \text{mT}$ 

Multilayer coating: high-T<sub>c</sub> SC layers with  $d < \lambda$  which screen the Nb cavity

Suppression of vortex penetration due to the enhancement of  $H_{c1}$  in a thin film with d <  $\lambda$  (Abrikosov, 1964)

$$H_{c1} = \frac{2\phi_0}{\pi d^2} \left( \ln \frac{d}{\xi} - 0.07 \right)$$

The breakdown field could be increased up to superheating field of the coating material:  $\sim 500 \text{ mT}$  for Nb<sub>3</sub>Sn

# **Superheating field**

- Meissner state can only exist below the superheating field H < H<sub>s</sub>
- Periodic vortex instability of the Meissner state as the current density  $J_s = H_s/\lambda$  at the surface reaches the depairing limit
- GL calculations of the superheating field H<sub>s</sub> at T ≈ T<sub>c</sub> (Matricon and Saint-James, 1967)

 $B_{s} \approx 1.2B_{c}, \qquad \kappa \cong 1, \\ B_{s} \approx 0.745B_{c}, \qquad \kappa >> 1$ 

 T << T<sub>c</sub> clean limit at κ >> 1: (Galaiko, 1966; Catelani and Sethna, 2009)

 $B_s \approx 0.84B_c$ 

but this corresponds to a gapless state













Hernandez and Dominguez, PRB 65, 144529 (2002)

#### Why is Nb<sub>3</sub>Sn on Nb much better than Nb<sub>3</sub>Sn on Cu?



 $Nb_3Sn/Nb$  cavity is much better protected against perpendicular vortices produced by weak transverse stray fields  $H_{\perp}$  than  $Nb_3Sn/Cu$  cavity

Meissner state persists up to  $H_{\perp} < H_{c1}^{(Nb)}$ . Perpendicular vortices in the film have very large energy ~ ln(w/ $\xi$ )

Meissner state is destroyed for small  $H_{\perp} < (d/w)H_{c1}^{(Nb}S^{n)} << H_{c1}^{(Nb}S^{n)}$  due to large demagnetization factor w/d ~10<sup>3</sup>-10<sup>5</sup>

#### Enhanced parallel H<sub>c1</sub> in a film



Squeezed vortex in a thin film has the reduced magnetic flux:  $\phi(d) = \phi_0[1 - \operatorname{sech}(d/2\lambda)]$ 

Vortex is thermodynamically stable if :  $\delta \Omega = \epsilon_0 - \phi(d)H/4\pi < 0$ .

Since  $\phi(d) \approx \phi_0 (d/\lambda)^2 / 8$  for d <  $\lambda$  is reduced,  $H_{c1}(d) = 4\pi/\epsilon_0 \phi(d)$  is enhanced

#### Can we get away with TFL thicker than $\lambda$ ?



# Six-fold increase of H<sub>c1</sub> in a dirty Nb film



Measure the change of the resonance frequency  $f = 1/2\pi (CL)^{1/2}$  as a function of the parallel dc magnetic field:

$$\frac{\delta f}{f} = \frac{L_k(0) - L_k(H)}{2L_0}$$

Groll, Gurevich, and Chiorescu, Phys. Rev. B81, 020504(R) (2010)

65 nm Nb thin film strip line w = 100  $\mu m$ , s = 3mm Nonlinear Meissner effect



Q(B) does not change much up to B = 1T and drops for B > 1T. Consistent with  $H_{c1}^{theor}(65nm) = 0.93T$ 

#### **Types of grain boundaries**

[001]



Cellular structure of twist dislocations in the ab plane

 $d = b/2sin(\theta/2)$ 

#### **Grain boundaries in TF coatings**

- High-H<sub>c</sub> superconductors have shorter coherence length, so they may be more prone to weak link grain boundaries than Nb
- GB becomes weak link if its critical current density J<sub>c</sub> is much smaller than the depairing current density J<sub>d</sub> = H<sub>c</sub>/ $\lambda$



$$H > H_J \cong H_c \frac{J_c}{J_d}$$

For J<sub>c</sub> < 0.1J<sub>d</sub>, the field onset of vortex penetration along GBs in Nb<sub>3</sub>Sn TFL drops below 50 mT

Breakdown fields of 160-200 mT of the best polycrystalline Nb cavities seem to rule out the weak link behavior of GBs

### **Dissipation in "strong GB"**

- High-J<sub>c</sub> GB: overdamped Josephson junction with high J<sub>c</sub> and low GB sheet resistance R<sub>b</sub>
- If the TFL thickness is smaller than the Josephson core size  $I = J_d \xi/J_c$ , the grain boundary behaves like a RSJ small Josephson junction.
- Quasi-static rf field if  $J_c R_b >> \omega \phi_0 \sim 1 \, \mu V$
- Averaged RF dissipated power  $q = R_b \frac{\omega d}{2\pi L} \oint J(t) [J^2(t) J_c^2]^{1/2} dt$ :

$$q = \frac{R_b d}{2L\lambda^2} (H^2 - H_v^2), \qquad H_v = \lambda J_c$$

- GB contribution to the surface resistance:
- Is frequency independent
- Has a field threshold H<sub>v</sub>
- Increases as the grain size L decreases
- May be reduced for cleaner GBs with smaller R<sub>b</sub>

### How bad can grain boundaries be?



16<sup>o</sup> [001] tilt grain boundary in YBCO





Song et al. Nature Mat. 4, 470 (2005)

Strong suppression of superconductivity at GBs

50

Exponental drop of  $J_c$  with the misorientation angle Current blockage by weak link GBs in polyscrystals

Very serious problems for applications

# **Electromagnetic granularity**



Polyanskii, 2001

# Coated conductor technology to ameliorate current blocking by grain boundaries in HTS



Single crystal by the mile

#### Weak overheating in multilayers



Nb cavity with d = 3mm,  $\kappa$  = 10 W/mK Nb<sub>3</sub>Sn coating with Nd<sub>s</sub> = 100 nm,  $\kappa$  = 10<sup>-2</sup> W/mK Insulating Al<sub>2</sub>O<sub>3</sub> layers, Nd<sub>i</sub> = 10 nm,  $\kappa$  = 0.3 W/mK (Nemoto et al, Cryogenics, 25, 531 (1985))

 $d_i/\kappa_1 = d_s/300\kappa_s$  - I layers are negligible  $d/\kappa = 3Nd_s/\kappa_s$  - TFML adds only 30% to the thermal resistance of the Nb shell

- Thickness of I layers d = 1-2 nm is smaller than the wavelength ~ 100 nm of thermal phonons at 2K so I layers weakly impede phonons generated by warm quasiparticles
- More effective ballistic heat transfer from TFML structure for d < I<sub>Ph</sub>

# Two-gap superconductivity in MgB<sub>2</sub>

J. Akimitsu et al, Nature 410, 63 (2001)





- 2D big gap for in-plane  $\sigma$ -orbitals s and 3D small gap for out-of-plane  $\pi$ -orbitals
- Weak interband coupling due to orthogonal p<sub>z</sub> and p<sub>xy</sub> orbitals of B

High  $T_c = 40K$ 

#### Is two-gap superconductivity in MgB<sub>2</sub> good for TSRF?



 $R_s$  is dominated by the smaller gap, so the BCS resistance of MgB<sub>2</sub> may not be better than  $R_s$  for Nb<sub>3</sub>Sn because  $\Delta_{\pi}^{MgB2} = 2.3 \text{ meV} < \Delta^{Nb3Sn} = -3.1 \text{ meV}.$ 

# Effect of nonmagnetic impurities on low field R<sub>BCS</sub>

- Effect of intraband scattering on the linear surface resistance of MgB<sub>2</sub> is similar to single-band superconductors:
- No suppression of the superconducting gap (Anderson theorem)
- Increase of the London penetration depth
- Increase of the BCS surface resistance
- Decrease the lower critical field (the onset of vortex penetration)



Nonmagnetic impurities appear to be not too bad for R<sub>BCS</sub>, but are they benign at high rf fields?

11<sup>th</sup> SRF Workshop, Travemünde, September 8<sup>th</sup> – 12<sup>th</sup> 2003

E. Palmieri

# Effect of interband impurity scattering on R<sub>s</sub>

• Interband scattering increases  $\Delta_{\pi}$  and decreases  $\Delta_{\sigma}$ 



M. lavarone et al, Phys. Rev B 71, 214502 (2005)

- The observed increase of Δ<sub>π</sub> from 2.1 meV to 2.8 meV by impurities may decrease R<sub>s</sub> at low T despite suppression of T<sub>c</sub> by doping and interband scattering
- Competition between interband and intraband impurity scattering: optimum R<sub>s</sub> at intermediate impurity concentrations different from that of single-band SC

## Decoupling of phase-locked bands by rf current

- Band decoupling by electric fields and currents well below the depairing limit
- Formation of interband phase textures: periodic structure of interband phase slips along the direction of current

Gurevich and Vinokur, PRL 90, 047004 (2003); PRL 97, 137003 (2006)



Domain walls of width  $L_{\theta} >> \xi$ . Period depends on current.

#### **Phase locked current state**



Same phases  $\chi_1 = \chi_2$  to minimize the Josephson energy,

 $W_{J} = (\hbar J_{c}/2e)[1 - \cos(\chi_{1} - \chi_{2})]$ 

Current-carrying state:

$$\Psi_1 = \Delta_1 \exp(i\chi_1), \qquad \Psi_2 = \Delta_2 \exp(i\chi_2),$$

 $\nabla \chi_1 = \nabla \chi_2 = \mathbf{Q}$ 

What happens at higher currents?

#### Transition to a phase slip state



- What happens if the depairing limit  $Q\xi_2 \sim 1$  is reached in film 2, but  $Q\xi_1 << 1$  in film 1?
- Current redistribution enforces different  $Q_1 \neq Q_2$  competing with the Josephson energy



- Current-induced interlayer phase slip texture provides current sharing between films (bands) 1 and 2
- For weak Josephson coupling, the lock-in transition occurs at I << I<sub>d</sub>

#### Interband phase textures in MgB<sub>2</sub>

- For the parameters of MgB<sub>2</sub>, J<sub>c1</sub> is not much smaller than J<sub>c2</sub>.
- Static interband phase textures  $\theta(x)$  along the current direction at  $\mathbf{Q} \approx 1/\xi_{\pi}$



Screening current:  $cH/4\pi\lambda_L \approx c\phi_0/16\pi^2\lambda_L^2\xi_\pi$ Band decoupling by magnetic field

$$H_{\theta} = \frac{\phi_0}{4\pi\lambda_L \xi_{\pi}} \cong 30mT \cong H_{c1}$$

for  $\lambda_L$  = 105 nm (Zehetmayer et al, Phys. Rev. B 56, 052505 (2002)) and  $\xi_{\pi}$  = 50 nm (STM by Eskildsen et al, PRL 89, 187003 (2002))

- Textures facilitate vortex penetration over the surface barrier
- Breakdown of the linear London electrodynamics, increase of R<sub>s</sub>
- Nonlinearity of the rf surface impedance at  $H \approx H_{\theta}$  (not good for TSRF)

### Increase of $H_{\theta}$ by nonmagnetic impurities

• Increase of interband Josephson coupling by interband impurity scattering

(Gurevich, Physica C456, 160 (2007)

$$\varepsilon_J = N_1 \Delta_1 \Delta_2 \left( \frac{\lambda_{12}}{w} + \frac{\pi \gamma_{12}}{4T_c} \right)$$

with w =  $\lambda_{11}\lambda_{22} - \lambda_{12}\lambda_{21}$ . For MgB<sub>2</sub>,  $\lambda_{12}/w \sim 0.3$ , so interband coupling and H<sub>0</sub> is significantly enhanced by impurities if

 $\gamma_{12} \ge 0.4T_c$ 

Interband mixing due to impurity scattering may increase  $H_{\theta}$  up to  $H_{c}$  without significant suppression of  $T_{c}$ 



# CONCLUSIONS

- TFML coating can break the Nb cavity monopoly if the physics of unconventional superconductors in strong rf fields is understood.
- The TFML technology requires the ALD (or other magic techniques) + the right choice of the TFML grail material + proper impurity management , so ...

#### You must choose, but choose wisely...

