Advances in SRF for Low β Ion Linacs

Sébastien Bousson

CNRS/IN2P3/ IPN Orsay – Paris-Sud University

SRF 2011 Conference – 25th to 29th July 2011 - Chicago

Disclaimer

This review is covering a wide range of low beta ion cavities developments for several applications, excepted high energy physics and neutron sources:

Refer to these 2 others talks to have a complete picture:

✓ SRF Development for High Energy Physics, Mark Champion

✓ Advances in SRF for Neutron Sources , Sang-Ho Kim

Outlook

Facility upgrades

- ATLAS (ANL)
- o HIE-ISOLDE (CERN)
- Re A3 (MSU)
- o ISAC-II (TRIUMF)
- New projects
 - SPIRAL-2 (GANIL, CEA Saclay, IPN Orsay)
 - o SARAF (SOREQ)
 - FRIB (MSU)
 - IFMIF (CEA Saclay)
- > Other low beta SC cavities R&D

ANL : ATLAS UPGRADE (1)

Project objectives: Replace the 3 existing 97 MHz split-rings by a new cryomodule to increase beam transport efficiency (\nearrow acceptance & \checkmark emittance growth) **Cavity type:** Quarter-wave resonators, f=72 MHz, β =0.077 **Goal:** Voltage = 2.5 MV (Eacc ~ 7.5 MV/m with Leff = $\beta\lambda$)

Parameter	Value	Units		
Frequency	72.750	MHz		
Peak Beta	0.077			
QRs	26.4	Ohm		
R/Q	576	Ohm		
βλ	31.75	cm		
Design Voltage	2.5	MV		
$\Delta \mathbf{f} / \Delta \mathbf{E}^2_{acc}$	-1.9	Hz/(MV/m) ²		
$\Delta \mathbf{f} / \Delta \mathbf{P}$	-2.6	Hz/Torr		
Tuning Sensitivity	~8	kHz/mm		
At Eacc= 1 MV/m				
Stored Energy	0.375	Joule		
E _{peak}	5.16	MV/m		
B _{peak}	76.2	Oe		

Argor

EM design: a conical-shape outer housing reducing by 20 % the ratio Bpk/Eacc

Cavity preparation:

- 150 µm removed by EP (12 hours total EP time) on the new ANL EP system
- HPR and assembly in a class 100 clean room

RF test of the first prototype:

Final EB @ Sciaky

Cryomodule design: 17.5 MV in 5.2 m Clean cavity string (separate vacuum)

ANL: ATLAS UPGRADE (3)

Cold Tuning System Cavity wall deformation by piezo

2 Noliac piezo stacks : 10x10x40 mm Preload: by compressing 14 Belleville washers

To know more: THIOB04 by M.P. Kelly

Project objectives: post-accelerate the RIB beam coming from REX-ISOLDE up to 10 MeV/u (intermediate phase at 5.5 MeV/u).

Cavity type: Quarter-wave resonators, Nb/Cu, f=101.28 MHz

- SC-linac between 1.2 and 10 MeV/u
- 32 SC QWR (20 cavities @ β =0.1 and 12 cavities @ β =0.06)

Performances goal: Eacc = 6 MV/m and 7 W max of dissipated power

Objectives based on past experience at INFN-Legnaro on sputtered cavities developed for ALPI

CERN : HIE ISOLDE (2)

Cavity substrate: OFE copper, 10 mm thick, cold worked; deep drawing and EB welding at CERN. A new design and fabrication process is under study.

- Specially studied beam aperture shapes (racetrack) to minimize the beam steering effect of QWR.
- Op. T° 4.2 K, LHe only on the cavity top and in the stem.

Table 1: Cavity design parameters				
Cavity	Low β	high eta		
No. of Cells	2	2		
f (MHz)	101.28	101.28		
eta_0 (%)	6.3	10.3		
Design gradient $E_{acc}(MV/m)$	6	6		
Active length (mm)	195	300		
Inner conductor diameter (mm)	50	90		
Mechanical length (mm)	215	320		
Gap length (mm)	50	85		
Beam aperture diameter (mm)	20	20		
$U/E_{\rm acc}^2 ({\rm mJ/(MV/m)^2}$	73	207		
$E_{\rm pk}/E_{\rm acc}$	5.4	5.6		
$\hat{H_{pk}}/E_{acc}$ (Oe/MV/m)	80	100.7		
$R_{\rm sh}^{\prime}/Q(\Omega)$	564	548		
$\Gamma = R_{\mathbf{S}} \cdot Q_0 \left(\Omega \right)$	23	30.6		
Q_0 for 6MV/m at 7W	$3.2\cdot 10^8$	$5\cdot 10^8$		
TTF max	0.85	0.9		
No. of cavities	12	20		

design, for a 3D fabrication from a billet

CERN : HIE ISOLDE (3)

Sputtering: 2 techniques are studied: bias diode and magnetron sputtering

Bias Diode Sputtering

Magnetron Sputtering

Courtesy M. Pasini

First RF test on the prototype: an accelerating field of 3 MV/m reached, with an important slope on the Q_0 .

Optimization of deposition parameters are undergoing (first main goal: increase the RRR of the Nb film)

CERN : HIE ISOLDE (4)

Cryomodule: common cavity/cryomodule vacuum, superconducting solenoid

To know more:

THOB07: M. Pasini: HIE Isolde QWR

TUP 0067: G. Lanza, S. Calatroni et al. : QWR sputtering

Project objectives: Upgrade of ISAC II (Phase 2)

Cavity type: 20 more quarter-wave resonators, beta 0.11 @ 141 MHz. Specifications: P<7 W/cavity and voltage = 1.08 MV. All cavities fabricated by local company PAVAC.

Performances:

Individual cavity testing: Almost all cavities above specs. (average Epk=32 MV/m)

 All cryomodules are installed since March 2010 and have accelerated beam with Epk=26 MV/m in average. Some studies are ongoing to increase cavity performances.
 More information : Talk by R. Laxdal on Thursday THIOB06 Poster by D. Longuevergne MOP0017

GANIL, CEA, IPNO : SPIRAL-2 (1)

Project objectives: construction of a 40 MeV deuterons accelerator (which can also accelerate q/A = 1/3 and 1/6) as a driver for RIB production

	amamama		(A management			n (II) (III) (IIII) (IIII) (III) (II	T
←	Beta	0.07 energy	section	<u>L~35 m</u>	Beta 0.12 er	ergy section	>

	Cryomodule	Α	В
	Valve-to-valve length [mm]	610	1360
	# cavities	12	14
	f [MHz]	88.05	88.05
	β_{opt}	0.07	0.12
	Epk/Eacc	5.36	4.76
lattice 1040 mm	Bpk/Eacc [mT/MV/m]	8.70	9.35
lattice 1940	r/Q [Ω]	599	515
1130	Vacc @ 6.5 MV/m & β_{opt}	1.55	2.66
Cryomodule A Cryomodule B Power coupler	Lacc [m]	0.24	0.41
CEA Saclay IPN Orsay LPSC Grenoble	Beam tube \varnothing [mm]	38	44

GANIL, CEA, IPNO : SPIRAL-2 (2)

Low beta cavities ("A" type): developped by CEA Saclay: QWR with dismountable copper bottom flange

12 over 13 cavities received – 1 under repair

Courtesy P. Bosland

GANIL, CEA, IPNO : SPIRAL-2 (3)

High beta cavities ("B" type): developed by IPN Orsay: QWR with welded Nb bottom flange, Titanium He tank (4 mm), SS cavity flanges.

Total produced: R&D phase: 1 prototype +2 pre-series Series production: 16 (made by Research Instruments)

GANIL, CEA, IPNO : SPIRAL-2 (4)

Performance Goal : 6.5 MV/m and 10 W max.

- Preparation: standard BCP, HPR @ 100 bar, class 10 clean room assembly
- All cavities exhibits multipacting. MP Barriers above 1 MV/m are easily processed. FE level and onset is variable, but when present, it is always processed in VT.
- Low β cavities: cavities tested so far are in the spec. Some have Eacc > 10 MV/m !
- High β cavities: all series cavity tested and in the spec with important margins !

GANIL, CEA, IPNO : SPIRAL-2 (4)

High beta cavities : baking effect

Courtesy G. Olry

- 16 -

- After 72h drying -> 48 h baking @ 120°C
- "Forced" air flow inside the helium vessel + heater on the cavity bottom
- Cavity wrapped in a foil blanket

Covity	Losses @ 6.5 MV/m [W]			
Cavity	No baking	With baking		
MB01	8.5	3.7 (-56%)		
MB02	6.9	4.1 (-41%)		
MB03	7.0	4.4 (-47%)		
MB04	8.4	3.6 (-58%)		
MB05	7.2	3.5 (-51%)		
MB06	7.5	4.8 (-36%)		
MB07	6.9	3.4 (-51%)		
MB08	Х	4.0		
MB09	8.9	3.9 (-56%)		
MB10	7.1	3.5 (-51%)		
MB11	Х	3.1		
MB12	Х	3.8		
MB13	Х	3.0		
MB14	Х	4.0		
MB15	Х	3.1		
MB16	Х	3.9		
Mean value	7.6	3.7		

GANIL, CEA, IPNO : SPIRAL-2 (5)

Low β Cold tuning system

Mechanical tuner, push system

Good linearity: 0.15 Hz/motor step Sensitivity: ~28 kHz/mm Full range: +25 kHz

High β Cold tuning system

Tuning by insertion of an Nb rod

2 ports on the top of the cavity:

- a) One static plunger
- b) One moving plunger

Sensitivity ~1 kHz/mm with Ø 30 mm plunger Introducing one plunger by 50 mm(Ø 30 mm) First "coarse" tuning: + 50 kHz then fine tuning: +/- 4 kHz

GANIL, CEA, IPNO : SPIRAL-2 (6)

Low β Cryomodule

High β Cryomodule

Two different layout, but both have separated vacuum (clean string assembly)

Power couplers: developed by LPSC Grenoble: see FRIOA04 by Y. G. Martinez

MSU : FRIB (1)

Project objectives: Produce RIB using a 400 kW CW heavy ion driver linac (p to U) up to 200 MeV/u.

Cavity type: Quarter-wave resonators (80.5 MHz) and half-wave resonators (322 MHz), bulk niobium for a total of 344 cavities and 52 cryomodules

Courtesy Q. Zhao, R. York

in []: matching cryomodule

MSU : FRIB (2)

Cavity type: Quarter-wave resonators (80.5 MHz) and half-wave resonators (322 MHz), bulk niobium for a total of 344 cavities and 52 cryomodules

Туре	λ/4	λ/4	λ/2	λ/2
β _{opt}	0.041	0.085	0.29	0.530
f(MHz)	80.5	80.5	322	322
Aperture (mm)	30	30	30	40
V _a (MV)	0.81	1.62	1.90	3.70
E _p (MV/m)	30.0	31.5	31.5	31.5
B _p (mT)	53	71	75	77
T(K)	4.5	4.5	2.0	2.0

4 cavity types and 2 frequencies

MSU: FRIB... and ReA3 (3)

Cavity study status:

• Developments for ReA3: a FRIB technology "prototype" : β =0.041 QWR cavities successfully accelerates beam at ReA3; tested for FRIB gradients (first accelerated beam by the cryomodule in May 2011)

• 5 β=0.53 HWR prototypes fabricated and 3 tested

 $2_0 from P_f P_r - P_i$

MSU: FRIB... and ReA3 (4)

Cavity study status:

• Test of β=0.085 QWR prototype

Thermal calculations showing previous tuning plate above the critical temperature for superconductivity

Improved tuner design under progress

Cavity tests performed at 2K and 4.2 K

Study of alternatives:

- Feb 2011: Down selection between 161 and 322 MHz -> 322 MHz chosen
- April 2011: Down selection between single spoke & HWR -> HWR chosen
- An optimized β=0.29 HWR prototype as anpotential alternative will be studied by ANL.

More information on FRIB : Poster MOPO009 by M. Leitner et al. on ReA3 : Talk THIOB03 by D. Leitner

SOURCE

BEAM

Cavity type: Half-wave resonators

CEA Saclay : IFMIF

Project objectives: characterization of materials with intense neutrons flux (10¹⁷ n/s) for the future Fusion Reactor DEMO (~150 dpa). Based on two CW 40 MeV deuterons SC linac, 125 mA each.

EVEDA (demonstrator)

Parameters	Target Value	Units
Frequency	175	MHz
β value	0.094	
Accelerating field E _a	4.5	MV/m
Unloaded Quality factor Q_0 for R _s =20 n Ω	1.4×10 ⁹	
Freq. range of HWR tuning syst	± 50	kHz
Max. transmitted RF power by coupler (CW)	200	kW
External quality factor Q _{ex}	6.3×10 ⁴	

S. Bousson – Advances in SRF for low β ion Linacs - SRF 2011 – 25 to 29 July 2011 - Chicago

Courtesy F. Orsini

CEA Saclay : IFMIF (2)

Prototyping status: 2 prototypes have been fabricated and are under testing phase. Preliminary results shows strong MP barriers.

Cavity HPR at IPNO

More information : F. Orsini talk on Thursday (THIOB02)

Cold tuning system ("mushroom")

- 25 -

SOREQ : SARAF

Project objectives: SARAF phase 1 : a 2 mA protons and deuterons beam up to 4 MeV (resp. 5 MeV).

Cavity type: 6 Half-wave resonators / module; beta 0.09 @ 176 MHz. Specifications: P<10 W/cavity @ Epk=25 MV/m (Eacc=5MV/m)

Courtesy I. Mardor

PSM Cryomodule test:

- Each of the cavities individually reached stable operation at its specified field (Epk of 25 MV/m, corresponding to a voltage of 840 kV).
- FE: Improvement after He processing (a few 10⁻⁵ mbar)
- Difficulties with stable simultaneous operation of all cavities at nominal field due to cavity high sensitivity to He pressure

variations (60 Hz/mbar).

- -> difficult to compensate with the tuner (strong hysteresis)
- Increase of available RF power from 2 to 4 kW to compensate

- 26 -

More information : Poster by A. Perry, MOPO011

Other R&D on low β SC cavities

IPN Orsay: Triple spoke development for EURISOL. Reference solution to accelerate the p beam between 60 and 140 MeV.

-> Prototype fabricated (352 MHz, β 0.35), BCP, HPR and assembly done. To be tested in vertical cryostat in september 2011.

IAP Frankfurt: SC CH structure (MYRRHA
& CW ion linac). High real-estate gradients
for acceleration at low velocities
-> A new prototype fabrication has started,
325 MHz, 7 gaps, beta 0.16.
More information: poster by M. Amberg MOP0035

Conclusion

 SC RF developments for low beta ion accelerators is very active worlwide; many projects are under study or construction and drive intense R&D programs on such accelerating structures.

 There are many issues faced by all projects for these structures: field emission, multipacting, tuning capabilities, and all required a dedicated study because all cavities are different (cavity type, beta, coupling or tuning solutions)...

 Progress done are tremendous, and in some cases, peak fields achieved start to be comparable with the ones obtained on electron cavities.

THANK YOU FOR YOUR ATTENTION!

Acknowledgment

Many thanks to all people who provided me material for this presentation

S. Bousson – Advances in SRF for low β ion Linacs - SRF 2011 – 25 to 29 July 2011 - Chicago