SRF Development for High Energy Physics

Mark Champion SRF 2011

Introduction

- The HEP community has shown increasing interest in SRF technology in recent years
 - ILC R&D program
 - Project X at Fermilab
 - Neutrino factories and muon colliders
- However, the application of SRF technology to HEP research has a long history
- Now let's go back in time and take a look at that history

Stanford High Energy Physics Laboratory (HEPL) a.k.a. Hanson Experimental Physics Laboratory

- 1962: First measurements of superconducting cavity performance
 - Lead-plated S-band 2856 MHz muffin tin cavities
 - Qo ~ 1e8-1e9, Bp ~ 100 G (10 mT), 4 K
- 1965: First acceleration of electrons with a superconducting cavity
- 1972: First superconducting accelerator
 - Based on L-band 1300 MHz niobium cavities
 - Cavity performance limited by multipacting

3

• the elliptical cavity shape was not yet developed

HEPL 1300 MHz Cryomodule Pair

Courtesy of T. Smith, HEPL

Layout of HEPL Cryomodule

Assembled 20-foot accelerator dewar module. This section has end caps at one end and is connected to another module at the other end.

- A. RF power input.
- B. Liquid nitrogen vent.
- C. Dewar support and alignment adjustment.
- D. Vacuum jacket (36 in. diameter tank).
- E. Liquid nitrogen shield.
- F. Helium dewar (24 in. diameter tank).
- G. Accelerator structure. This is assembled from seven units, one of which is detailed at bottom center.
- H. Field sampling probe. (Output to feedback electronics.)
- I. Structure tuner.
- J. Detail of 24 in. diameter V-band indium seal.

🛟 Fermilab

TRISTAN and **KEKB**

TRISTAN was an electron-positron collider constructed at KEK in the 80's

- 32 five-cell 508 MHz elliptical SC cavities housed in 16 cryomodules
- Installed in 1988 1989 (augmented existing NC cavities)
- Eacc = 5 MV/m, Qo = 2e9 at 4.2 K, continuous wave
- TRISTAN was shut down in 1995

KEKB was an asymmetric-energy electron-positron collider constructed at KEK in the 90's

- Reused much of the TRISTAN infrastructure and components
- 8 single-cell 508 MHz SC cavities housed in 8 cryomodules
- Ecavity = 1.2 2 MV, Qo ~ 1e9 at 4.2 K, continuous wave
- Heavy beam loading and HOM loading (IB = 1.4 A)
- KEKB has been shut down and is being upgraded to SuperKEKB

Cryostat for TRISTAN SRF Cavities

http://accelconf.web.cern.ch/accelconf/SRF89/papers/srf89g29.pdf

7 Mark Champion – SRF 2011

Cryomodules in the TRISTAN MR Tunnel

From KEK Annual Report 1988 - http://www-lib.kek.jp/ar/ar.html

Cryostat for KEKB SRF Cavities

http://epaper.kek.jp/p99/PAPERS/THBL2.PDF

Cryomodules in the KEKB Tunnel

KEK Annual Report 1998 - <u>http://www-lib.kek.jp/ar/ar.html</u>

http://www-acc.kek.jp/kekb/pictures/KEKB_photo/ring1.jpg

DESY HERA 500 MHz Cryomodules

- Electron-proton collider
- 16 SC cavities commissioned in electron storage ring in 1991-1992
 - Augmented 84 NC 500 MHz cavities to increase beam energy
- Bulk niobium, RRR 300, 4-cell, 500 MHz elliptical cavities
- Eacc = 5 MV/m, Qo = 2e9 at 4.2 K, continuous wave
- Two klystrons, combined, drive all 16 cavities (vector sum RF control)
- HERA experiment concluded in 2007
- The initiation of the TESLA Test Facility coincided approximately with the successful commissioning of the HERA SC cavities

Courtesy of W-D Moeller, DESY

🛟 Fermilab

HERA Cavities and Cryomodule

12 Mark Champion – SRF 2011

Courtesy of W-D Moeller, DESY

‡ Fermilab

LEP Superconducting Cavities

- The LEP electron-positron collider at CERN was upgraded with SC cavities in the period 1992-1999
- Beam energy increased from ~46 GeV to ~100 GeV
- Final configuration: 288 four-cell cavities
 - 272 niobium sputtered onto copper cavities
 - 16 bulk niobium cavities
 - 48 copper cavities (originally 128)
- 352 MHz, 4.5 K, continuous wave
- 8 cavities per 1.3 MW klystron
- LEP cryomodules were removed in 2000-2001 to make way for the LHC

LEP 352 MHz Cavity and Cryomodule

4 cavities / cryomodule

Courtesy of CERN

72 modules going into storage

‡ Fermilab

Achieved Gradients in LEP Cu/Nb Cavities in 1999

P. Brown et al., "Performance of the LEP200 Superconducting RF System," SRF1999.

LHC Superconducting Cavities

- 400 MHz, single-cell, niobium sputtered onto copper cavities, 4.5 K, continuous wave
- Four cavities per cryomodule
- Sixteen cavities total
- 2 MV / cavity (5.3 MV/m), Qo > 1e9
- One klystron per cavity

LHC SC Cavity

P. Maesen, "LHC Superconducting Cavities," CWRF2008

LHC Cryomodule

Courtesy of CERN

CESR – Cornell Electron Storage Ring

- Electron-positron collider completed in 1979
- Upgraded with four SC cavities in the period 1997 – 1999 (replaced NC cavities)
 - 500 MHz, single-cell, one cavity per cryomodule
 - Eacc = 6 MV/m, Qo > 1e9 at 4.2 K, continuous wave
 - Heavy beam loading and HOM loading (IB ~ 0.8 A max)
 - Cavity and Cryomodule design was industrialized with Accel (now RI) and sold to several light sources world wide
 - AES is presently fabricating two of these systems

🛟 Fermilab

Courtesy of Cornell University

CESR-B 500 MHz Cryomodule

Courtesy of Cornell University

Future HEP Applications of SRF Technology

- International Linear Collider
 - Approximately 17,000 cavities over 31 km
- Project X
 - 3 GeV continuous-wave H- linac followed by 8 GeV pulsed H- linac
- Large Hadron Collider upgrades
 - Crab cavities for interaction region
- Muon Collider / Neutrino Factory
 - Project X driver plus downstream acceleration of muon beam

International Linear Collider Layout

ILC Cavities and Cryomodules

Each cryomodule contains (8 cavities + 1 magnet) or (9 cavities)

Total ~2000 cryomodules, ~17000 cavities.

Project X Reference Design

Mark Champion – SRF 2011

24

PX SRF Linac Technology Map

β =0.1	1 β=	0.22	β=0.4	β =0.61	β =0.9	β =1.0	
\leftarrow			CW	/	\rightarrow	Pulsed	
	325 MHz		/	650	MHz	1.3 GHz	
	2.5-160 MeV			0.16-	3 GeV	3-8 GeV	
Section		Freq	Energy (Me	V) Cav/mag	/CM	Туре	
SSR0 (β _G =0.11)		325	2.5-10	18 /18/	/1 S	SSR, solenoid	
SSR1 (β	_G =0.22)	325	10-42	20/20/	2 S	SR, solenoid	
SSR2 (β	_G =0.4)	325	42-160	40/20/	/4 S	SR, solenoid	
LB 650	(β _G =0.61)	650	160-460	36 /24/	/6 5-cell	elliptical, doublet	
HB 650	(β _G =0.9)	650	460-3000	160/40/	20 5-cell	elliptical, doublet	
ILC 1.3	(β _G =1.0)	1300	3000-8000) 224 /28	/28 9-cel	l elliptical, quad	

25 Mark Champion – SRF 2011

Courtesy of Bob Kephart, Fermilab

‡ Fermilab

ILC

In present MC baseline design, Front End is same as for NF

Steve Geer

24 February, 2011

8

Courtesy of S. Geer, Fermilab

Summary

- HEP has been a driver for the development of SRF technology for many years
 - Starting at Stanford in the early 60's
 - Successful implementation at HERA, CESR, TRISTAN, KEKB, LEP, and LHC
- HEP has continued this role in recent years with the ILC R&D program and Project X
- HEP plans for future accelerators require SRF technology
 - ILC, Project X, LHC upgrades, and Muon collider / Neutrino factory
- Substantial overlap with non-HEP applications is driving collaborations world wide
 - Spallation neutron sources, nuclear physics, light sources, and Accelerator Driven Systems

Acknowledgements

- Thanks to all of the colleagues in the SRF community for 50 years of effort to develop and utilize SRF technology
- Thanks for the many publications, from which I have obtained the information for this presentation
- Special thanks to Wolf-Dietrich Moeller, Todd Smith, and Nobu Toge

