

Akira Yamamoto ILC-GDE and KEK

Prepared for SRF2011, Chicago, July 25, 2011 With sincere acknowledgment for all ILC-GDE SCRF collaborators and global SCRF industrial partners Special thanks for M. Ross, N. Walker, and R. Geng

A. Yamamoto, SRF-110725 Advances in ILC-SRF

1

Design Update in SB2009

Motivation: Cost containment

- Single accelerator tunnel
- Smaller damping ring
- e+ target location at highenergy end,
- SCRF: Gradient variation of 31.5 MV/m +/- 20 %,
- HLRF: KCS and DRFS with RDR-RF unit as backup

$RDR \rightarrow SB2009$

Global Plan for ILC Gradient R&D

Year	07	2008	20	09	20	010	2011	2012	
Phase		TDP-1			TDP-2				
Cavity Gradient in v. test to reach 35 MV/m	→ Yield			0%		→ Yield 90%			
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Global effort for stri assembly and test (DESY, FNAL, INFN, KEK)				ing			
System Test with beam acceleration		F	LASH ST	(DE F2 (SY) KEK	,NN (, test	IL (FNAL start in 2	.) 2013)	
Preparation for Industrialization				Production Technology R&D			ology		

New baseline gradient: Vertical acceptance: <u>35 MV/m average, allowing $\pm 20\%$ spread (28-42 MV/m)</u> Operational: 31.5 MV/m average, allowing $\pm 20\%$ spread (25-38 MV/m)

Global Plan for ILC Gradient R&D

Year	07	200	8	2009	20	010	2011	2012	
Phase		TDP-1			TDP-2				
Cavity Gradient in v. test to reach 35 MV/m		→ Y	Tiel	d 50%		→	> Yield 90%		
Cavity-string to reach 31.5 MV/m, with one- cryomodule	Global effort for st assembly and test (DESY, FNAL, INFN, KEK)					ing			
System Test with beam acceleration			FL/	ASH (DE STF2 (I	SY) KEK), NN (, test	IL (FNAL t start in 2	.) 2013)	
Preparation for Industrialization				Р	rod	uctio	n Techn R&D	ology	

New baseline gradient: Vertical acceptance: <u>35 MV/m average, allowing $\pm 20\%$ spread (28-42 MV/m)</u> Operational: 31.5 MV/m average, allowing $\pm 20\%$ spread (25-38 MV/m)

H. Padamsee, ILC-08 (Chicago)

Global Yield of Cavities in 2008 tested at DESY and JLab

Originally reported by <u>H. Padamsee</u>

Process Yield: ~ 23 % @ 35 MV/m, based on 48 Tests for19 cavities

Manufactured by ACCEL, AES, Zanon, KEK (Ichiro-type), and JLab

 Reported by H. Padamsee at TTC-08 (IUAC), and ILC-08, (Chicago), based on the status in 2008.

Definition for production yield, not established yet

Advances in ILC-SRF

5

Creation of a Global Database for Better Understanding of "Production Yield".

- Global Data Base Team formed by:
 - Camille Ginsburg (Fermilab), leader
 - Rongli Geng (JLab)
 - Zack Conway (Cornell University)
 - Sebastian Aderhold (DESY)
 - Yasuchika Yamamoto (KEK)
- <u>Activity</u>
 - July 2009:
 - Determine DESY-DB to be viable option,
 - Sept., 2009: (ALCPG/GDE)
 - Dataset, web-based, support by FNAL/DESY
 - Dec., 2009: (SB2009) : 1st update
 - March, 2010 (IW-ILC) : 2nd update
 - June, 2010 (End TDP-1) : 3rd update
 - March, 2011 (ILC-ALCPG): 4th update RI, Zanon, AES, <u>MHI</u> manufactured Cavity data included.
 - (3 region's data available)

<u>Production yield allowing to:</u>include the 2nd chemical process

Standard Procedure Established

for ILC-SCRF Cavity evaluation, in guidance of TTC

			Standard Fabrication/Process					
		Fabrication	Nb-sheet purchasing					
			Component Fabrication					
	/		Cavity assembly with EBW					
		Process	EP-1 (~150um)					
			Ultrasonic degreasing with detergent, or ethanol rinse					
all	Öv		High-pressure pure-water rinsing					
			Hydrogen degassing at > 600 C					
			Field flatness tuning					
			EP-2 (~20um)					
			Ultrasonic degreasing or ethanol (or EP 5 um with fresh acid)					
			High-pressure pure-water rinsing					
			Antenna Assembly					
	7		Baking at 120 C					
		Cold Test (vertical test)	Performance Test with temperature and mode measurement					

Key Process Fabrication

- Material
- EBW
- Shape

Process

- **Electro-Polishing**
- **Ethanol Rinsing or** •
- Ultra sonic. + Detergent • Rins.
- High Pr. Pure Water cleaning

IIL

Global ILC Cavity Gradient Yield Updated, March, 2011

Plot courtesy Camille Ginsburg of FNAL

Electropolished 9-cell cavities

JLab/DESY/KEK (combined) up-to-second successful test of

Global ILC Cavity Gradient Yield IL Updated, March, 2011 Plot courtesy

Camille Ginsburg of FNAL

Electropolished 9-cell cavities

A. Yamamoto, SRF-110725

A. Yamamoto, SRF-110725

Advances in ILC-SRF

10

A. Yamamoto, SRF-110725

A. Yamamoto, SRF-110725

Advances in ILC-SRF

14

SCRF 9-Cell Cavity Highlight: in 2010

Americas:

İİL

- Niowave-Roark-FNAL: 1st cavity reached 28.8 MV/m.
- Jlab set ~ 90% yield @ 35 MV/m (1 vendor, process at JLab
- FNAL-KEK: Cavity repaired, G improved from 11 to 30 MV/m

Asia:

- IHEP-KEK: 1st cavity (LL, large-grain, no-end) reached 20 MV/m,
- PKU-JLab: Cavity (Tesla, fine-grain) reached 28 MV/m,
- Hitachi-KEK: 1st cavity (Tesla-like, no-end) reached 35 MV/m
- MHI-KEK: Cavity (Tesla-like w/ end-HOM) reached 37 MV/m,
- MHI-KEK-<u>S1-Global</u>: cavity (Tesla-like) reached > <u>35</u> (40) MV/m

Europe:

• E-XFEL / HG-FP7: 600 cavity production order placed (2 vendors)

SRF Cavity and Gradient Highights 2010~ 2011

- <u>Americas</u>
 - FNAL mechanical polishing improved 9-cell cavity <u>ACC15</u> gradient from 19 MV/m to 35 MV/m
 - JLAB started processing and testing DESY <u>seamless 9-</u> <u>cell</u> cavity built from DESY 3-cell seamless units
 - 6 of AES 3rd production & 4 Niowave-Roark 1st production received by FNAL
- <u>Asia</u>
 - <u>KEK MHI-12</u> reached 40.7 MV/m gradient at Q0 6.2E9
 - KEK-JLAB: ACD shape cavity <u>ICHIR07</u> reached <u>40 MV/m</u> gradient at Q0 8E9
- <u>Europe</u>
 - DESY <u>large-grain 9-cell</u> cavity AC155 reached 45 MV/m at Q0 > 1E10, and more reached in the next, ...

Advances in ILC-SRF

then sent Jlab

ic Global Plan for SCRF R&D

Year	07	200	8	2009	2	010	20	11	2012
Phase		TI	DP-	1			TDP-2		
Cavity Gradient in v. test to reach 35 MV/m	→ Yield 50% -				\rightarrow	• Yie	ld	90%	
Cavity-string to reach 31.5 MV/m, with one- cryomodule	Global effort for string assembly and test (DESY, FNAL, INFN, KEK)				ng	We	e ar	e here	
System Test with beam acceleration	FLASH (DESY) , NML (STF2 (KEK, test sta					L (FN start	AL) n 20)13)	
Preparation for Industrialization	Production Technolog R&D						ology		
Communication with industry:	2009: 1 st step: Visit Vender (2009) 2010: 2 nd step: Organize Workshop (2010) 2011: 3 rd step: Send specification & receive response					sponse			

Integrated Systems Tests

A. Yamamoto, SRF-110725

Cryomodule Development & Test

- FLASH (DESY)
 - <32 MV/m> in CM operation, PXFEL-1
 - < 30 MV/m> in FLASH operation
- NML-CM1 (Fermi)
 - In progress
- STF: S1-Global (KEK)
 - Global effort
 - DESY/INFN/FNAL/SL AC/KEK
 - <26 MV/m> in CM operation

ALCPG 2011 - Eugene, Oregon

S1-Global Assembly/Test with Global Effort

DESY, FNAL, Jan., 2010

DESY, Sept. 2010

DESY, May, 2010

With Yuriy Pischalnikov Warren Schappert (FNAL) Oct. 2010

Advances in ILC-SRF

With

Denis Kostin

(DESY) Sept. 2010

S1-Global: Demonstrations/evaluation

- Every coupler and tuner demonstrated, as expected, and be applicable for ILC cavities
- Finding various subjects to be further investigated and settled

Comparison of cavity performance

ic

O Tuner mechanics trouble in two cavities

if 7-cavity operation by digital LLRF

LLRF stability study with 7 cavities operation at 25MV/m

- Vector-sum stability: 24.995MV/m ~ 24.988MV/m (~0.03%)
- Amplitude stability in pulse flat-top: < 60ppm=0.006%rms
- Phase stability in pulse flat-top: < 0.0017 degree.rms

Many Thanks for Global Collaboration for S1-Global

A. Bosotti, C. Pagani, R. Paparella, P. Pierini, INFN (Italy) K. Jensch, D. Kostin, L. Lilje, A. Matheisen, W.-D. Moeller, M. Schmoekel, P. Schilling, N. Walker, H. Weise, DESY (Germany) T. Arkan, S. Barbanotti, M. Battistoni, H. Carter, M. Champion, A. Hocker, R. Kephart, J. Kerby, D. Mitchell, Y. Pischalnikov, T.J. Peterson, M. Ross, W. Schappert, B. Smith FNAL (USA) C. Adolphsen, C. Nantista, SLAC (USA) M. Akemoto, S. Fukuda, K. Hara, H. Hayano, N. Higashi, E. Kako, H. Katagiri, Y. Kojima, Y. Kondo, T. Matsumoto, S. Michizono, T. Miura, H. Nakai, H. Nakajima, K. Nakanishi, S. Noguchi, N. Ohuchi, T. Saeki, M. Satoh, T. Shishido, T. Shidara, T. Takenaka, A. Terashima,

- N. Toge, K. Tsuchiya, K. Watanabe, S. Yamaguchi,
- A. Yamamoto, Y. Yamamoto, K. Yokoya, KEK (Japan)

27

Advances in ILC-SRF

ii Global Plan for SCRF R&D

Year	07	2008	3 2	009	2	010	20	11	2012
Phase		TC)P-1			TDP-2			
Cavity Gradient in v. test to reach 35 MV/m	→ Yield 50%				个	• Yie	ld	90%	
Cavity-string to reach 31.5 MV/m, with one- cryomodule	Global effort for string assembly and test (DESY, FNAL, INFN, KEK)				ng	We	e ar	e here	
System Test with beam acceleration	FLASH (DESY) , NML (FN STF2 (KEK, test start					_ (FN start	AL) n 2())13)	
Preparation for Industrialization	Production Technology R&D					ology			
Communication with industry:	 2009: 1st step: Visit Vender (2009) 2010: 2nd step: Organize Workshop (2010) 2011: 3rd step: Send specification & receive response 				sponse				

IC SCRF-ML Technology Required

RDR Parameters	Value				
C.M. Energy	500 GeV				
Peak luminosity	$2x10^{34}$ cm ⁻² s ⁻¹				
Beam Rep. rate	5 Hz				
Pulse time duration	1 ms				
Average beam current	9 mA (in pulse)				
Av. field gradient	31.5 MV/m				
# 9-cell cavity	14,560				
# cryomodule	1,680				
# RF units	560				

$RDR \rightarrow SB2009$

Industry responsible to

'Build-to-Print'

manufacturing

Regional Hub-Lab: C: responsible to

Hosting System Test

and Gradient

Performance

A. Yamamoto, SRF-110725

Regional

Hub-Lab:

B

Regional hub-laboratories

procurements to be open for any

world-wide industry participation

responsible to regional

Advances in ILC-SRF

30

coordination link

: Procurement link

Regional

Hub-Lab:

D

: Technical

Communication with Industry in 2011

- Visit factories, and Request for information
 - Based on currently available manufacturing technology and available information with worldwide industry
 - Assume the <u>EXFEL 'build-to-print' specifications</u> as a common reference, and
 - <u>Allow 'plug-compatible</u>' alternate designs with the cost equivalent or more effective production and/or better performance
- Requests for information to companies
 - 1. Cost comparisons: 20/50/100 % in 3 or 6 year production ?
 - 2. Factory-site location: company or laboratory ?
 - 3. Sharing responsibilities for the <u>cost-effective</u> production ?
 - 4. Deliverables with <u>'build-to-print'</u> fabrication?
 - 5. Consortium to be <u>considered</u> or not

Visiting Companies in Progress (and further plan)

	Date	Company	Place	Technical sbject
1	2/8	Hitachi	Tokyo (JP)	Cavity/Cryomodule
2	2/8	Toshiba	Yokohana (JP)	Cavity/Cryomodule, Magnet
3	2/9	МНІ	Kobe (JP)	Cavity / (Cryomodule)
4	2/9	Tokyo-Denkai	Tokyo (JP)	Material (Nb)
5	2/18	OTIC	NingXia (CN)	Material (Nb, NbTi, Ti)
6	3/3	(Zanon) mtg at INFN	Verona (IT)	Cavity/(Cryomodule)
7	3/4	RI	Koeln (DE)	Cavity (Cryomodule)
8	3/14, (4/8)	AES	Medford, NY (US)	Cavity (Cryomodule)
9	3/15, (4/7)	Niowave	Lansing, MI (US)	Cavity/ (Cryomodule)
10	4/6	PAVAC	Vancouver (CA)	Cavity, EBW-machine
11	4/25	ATI Wah-Chang	Albany, OR (US)	Material (Nb, Nb-Ti, Ti)
12	4/27	Plansee	Ruette (AS)	Material (Nb, Nb-Ti, Ti)
13	5/24	SDMS	Sr. Romans (FR)	Cavity, Vessel, joint
14	7/6	Heraeus	Hanau (DE)	Material (Nb, Nb-Ti, Ti)
15	9/14	Zanon	Verona (IT)	Cryomodule
16	11/16	SST	Munchen (DE)	EBW-machine

Advances in ILC-SRF

A. Yamamoto, SRF-110725

32

The 2nd workshop on SCRF

as a satellite meeting of SRF 2011

- Date: July 24, 2011
- Place: Chicago
- Agenda:
 - Introduction

- Reports from SC material vendor
- Comments from Potential Regional Hub-laboratory
- Discussions on the ILC SCRF industrialization model
- Note:
 - Open for everybody,
 - Many Industrial participations acknowledged

- Exchange information:
 - efforts on cost-effective SCRF cavity/cryomodule
 production and quality control
- Discuss on:
 - optimum industrialization models for ILC including the <u>scale, time, and site,</u>
 - sharing responsibilities between industry and laboratories, and/or industry and industry,
 - how to manage industrial constraint/regulation and to coordination it in global scale
- Provide:
 - advices for the ILC TDR and cost-estimate.

Cavity R&D for ILC 1 TeV-Upgrad R. Geng

ILC SRF cavity R&D beyond 2012

– Importance

IIL .

- Maintain "global" nature for coherence
- Project oriented, targeted R&D, benchmarked progress
- Resource sharing, cross-region experience exchange

....(continued)

- ILC: driver for high gradient SRF cavity technology

- Pursuit of ultimate gradient continues to motivate innovation
- Gradient success continues to benefit SRF based accelerators

year	# of >35 MV/m 9-cell cavities	# of labs capable of 35 MV/m processing	# of Industrial manufacturers capable of 35 MV/m fabrication
2006	10	1 DESY	2 ACCEL, ZANON
2011	41	4 DESY, JLAB, FNAL, KEK and others joining soon	4 RI, ZANON, AES, MHI, and others joining soon

Cavity R&D to be extended M. Ross

IIL for possible ILC 1 TeV Upgrade

- High gradient
 - Shape: LL/ICHIRO, RE, LSF on going
 - Processing: Mechanical polishing on going
 - Material
 - Large grain on going
 - Nb/Cu laminate needs re-start
 - Multi-layer and material beyond Nb to be encouraged
- High Q0
 - Large grain on going
 - ALD over coating R&D started
- Suppress field emission
 - CO2 snow cleaning on going
 - HOM can cleaning R&D started

• SRF 1.3 GHz cavity R&D progressed

Please refer further ILC related papers presented in SRF2011

- 9-cell cavity Gradient R&D:
 - Maximum gradient reaching > 45 MV/m (w/ large-grain)
 - Production-yield progressed in ILC Global data-base:
 - ~ 20 % at 35 MV/m in 2008 to ~ 60 % at 35 MV/m in 2011

Summary

Cavity-string performance in Cryomodule

- FLASH/PXFEL-1: reached <32 MV/m>
- NML: in progress
- S1-Global: reached <26 MV/m> with 7 cavity-string
- Superconducting accelerator system test
 - FLASH: progressing in acceleration for 9 mA demonstration
- Industrialization study in progress
 - in close communication with industry
- Further high-gradient R&D after TDR being prepared,
 - for possible 1-TeV upgrade