SRF Accelerator for Indian ADS Program: Present & Future Prospects

P. Singh Bhabha Atomic Research Centre, Mumbai, India

ADS

Energy generation using Thorium

➤Transmutation

➢Incineration

- ✓ By Spallation process with GeV energy protons striking on high Z target.
- ✓ Number of neutrons per proton per Watt of beam power reaches a plateau just above 1 GeV.

Most cost effective way to produce neutrons

Beam current requirement

$$P_{thermal}(MW) = E_{fission}(MeV)I(A)\frac{v_s}{v}\frac{k}{1-k}$$

Proton Energy : 1 GeV $v_s = 25$ neutrons/proton v = 2.5 neutrons/fission

P _{th} (MW)	I (mA)	I (mA)
	k=0.95	<i>k</i> =0.98
1000	29.2	10.2
1500	43.9	15.3
2000	58.5	20.4
2500	73.1	25.5
3000	87.7	30.6

World Thorium Resources

Country Australia India Norway USA Canada S. Africa Brazil **Other Countries** World total

Reserves (tons) 300,000 290,000 170,000 160,000 100,000 35,000 16,000 95,000 1,200,000

Roadmap for Accelerator Development for ADS

Beam Dynamics

•Aperture is more than 16 times the rms beam size in the SC Linac

Emittance growth is very small

•Transmission through the linac = ~97% (loss ~ 3% loss-RFQ).

Layout of 20 MeV Linac Section (LEHIPA)

High Current CW Linac.
 Space charge forces are strongest here.

- Main Design issue is beam loss control & emittance growth.
- Thermal management.

LEBT

Element	Length (cm)	Strength (G)
Drift	90	
Solenoid	30	1604
Drift	130	
Solenoid	30	1903
Drift	18	

LEBT Components

Solenoids Steering Magnets Electron Trap Diagnostics Designed, Fabricated & Tested. Designed. To be fabricated. Designed. To be fabricated. DCCT, ACCT, RGBPM, Faraday Cup, ...

Test Bench for LEBT using Alphatros Ion Source

Emittance measurement using solenoid scan method

$$\sigma_{11}^{\ 1} = \sigma_{11}^{\ 0} L^2 Q^2 - 2(L\sigma_{11}^{\ 0} + L^2 \sigma_{12}^{\ 0})Q + (\sigma_{11}^{\ 0} + 2\sigma_{12}^{\ 0}L + L^2 \sigma_{22}^{\ 0})$$

Normalized rms emittance is calculated to be 0.18π cm mrad

3 MeV RFQ

Parameters	Value	Units
I/O energy	0.05/3.0	MeV
Frequency	352.21	MHz
R ₀	0.3556	cm
Rho	0.283	cm
Synch. phase	-30	deg
Vane Voltage	85	kV
Modulation	1.96	
Es	32.9	MV/m
Total length	4	m
RF power	550	kW
Transmission	98	%

- It is planned to have it in 2 sections of 2 m each coupled via coupling cell.
- Planned to use Dipole stabilizer rods.
- Undercuts in the end regions to get the desired mode.
- 16 wall coolant channels and 8 vane cooling channels in a segment.
- Detailed Cooling requirements near the undercuts and Vacuum ports are in progress

MEBT

♦ Used for matching the beam from the RFQ to DTL

✤4 quadrupoles & 2 rf bunchers for matching the beam

♦Quadrupole gradient: 20-40 T/m, Eff. Length = 7cm, aperture ~ 3 cm (dia)

♣RF Bunchers @ 352.2 MHz, Rf Power = 5-6 kW

*****Total length $\sim 1 \text{ m}$.

Provision for BPM and Wall Current Monitor

Layout of MEBT

Drift Tube Linac

Parameters	Tank 1	Tank 2	Tank 3	Tank 4
Input Energy (MeV)	3.11	6.85	11.26	15.75
Output Energy (MeV)	6.85	11.26	15.75	20.23
Quad grad. (T/m)	47-46	45-44.5	44.5-43	43
Aperture radius (cm)	1.2	1.2	1.2	1.2
Acc. Field grad. (MV/m)	2.14	2.14	2.14	2.14
Total Power (kW)	396.8	417.5	414.5	412.2
Tank Length (m)	3.05	3.26	3.27	3.28

Tolerances

- ✓ Quadrupole displacement along the transverse direction: ≤ 100 µm
- ✓ Quadrupole tilt \leq 0.6 deg.
- ✓ Quadrupole field \leq 0.7 % of the designed value.
- ✓ Beam axis misalignment with respect to the DTL axis ≤ 0.5mm
- ✓ Beam tilt \leq 3 mrad

Tuners

- **☆**6 Tuners of dia. 12 cm in each tank.
- ✤Maximum Depth : 11 cm
- Nominal Position : 5.5 cm inserted
- Tuning range: 2.28 MHz (using all tuners)

Post couplers

One Post Coupler every third DT in Tank 1 and 2 and every second DT in Tank 3 and 4.
Diameter: 2.5 cm

Vacuum Ports

- ✤5 rectangular slots per vacuum port
- ♦No. of vacuum ports in first tank: 2

RFQ (400 keV) & DTL Prototypes

Layout of the 1 GeV Linac

Design Philosophy

- Match the beam from one structure to the next.
- Smooth phase advance per metre across all transitions for current independent matching.
- Avoid instabilities by keeping the zero current phase advance per period in all planes below 90 deg.

Roadmap for Accelerator Development for ADS Modified Normal Conducting Phase III

Frequency: 325 and 650 MHz

Scheme for 200 MeV High Intensity Proton Accelerator (a front end of the 1 GeV Linac)

Current : 30 mA

We may go in steps but the design needs to be done for 30 mA

Comparison between NC & SC linac (200 MeV)

NC Option

RFQ:0.5 MW3 MeVDTL:3.0 MW40 MeVCCDTL:6.4 MW100 MeVSC Linac:3.0 MW200 MeV

Total RF Power : ~13 MWLength: ~ 140 m

SC Option

RFQ: 0.5 MW3 MeV**Spoke/Ellip cavities**: 6.0 MW200 MeV

Total RF Power : ~6.5 MW Length : < 80 m

We save 6.5 MW of RF Power! Length is only 100 m !! Less number of components !!!

Preliminary RFQ Design (200 MeV Linac option)

		BARC: 325 MHz RFQ	Ja Ja
Fnorm	25 koV 2 MoV	X,rad 0.200 Y,rad 0.100 dWnw 0.100 0.100 0.075 0.000 0.075 0.100 0.100 0.005 0.005 0.005	Frea= 325.000 MHz VV= 3.018 MeV/u Q= 1 e A= 1 AMU
Lifergy	55 Kev-5 Iviev	0.000 X.m0.000 X.m0.000 F,deg C	Npart= 49226 urrent= 29.535 mA SPACE CHARGE
Frequency	325 MHz		x= 64 Ny= 64 Nz=128 ThSC= 1000.0 zhSC= 11 Jox= 0.15 hy/sy= 0.15 hz GF
Current	30 mA	x y (m)	
Vane Voltage	78 kV		
Length	4.15 m		······································
R ₀	3.634 mm	Phase [keg] 100:000 109:000	
		36.000 77 41514 cm	Zend= 415.14 cm

exit

go - go to end

next - go to next

nn-number of step to go

enter

Preliminary SSR2 ($\beta = 0.4$) Design

Optimization of SSR2 cavity

Parameter	Values
Geometrical beta	0.4
frequency	323.92 MHz
Peak electric field	9.15 MV/m
Peak Magnetic Field	13.66 A/m
Radius	26.13 cm
Cavity Length	36.81 cm

Elliptical Cavities 650 MHz

As the number of cells per cavity increases, the curves get narrower, and the velocity acceptance decreases.

Parameters	$\beta_{\rm G} = 0.6$	$\beta_{\rm G} = 0.8$
No. of Cells	5	5
Diameter (cm)	39.34	38.54
Dome B (cm)	2	2
Dome A/B (cm)	1.9	2.4
Wall Angle (deg)	8	7
Iris a/b (cm)	0.8	0.6
Bore Radius (cm)	4.0	4.0
Equator Flat (cm)	0.5	1.2
Acc. Gradient (MV/m)	15	15

Electric field profile in the 5 cell elliptical cavity.

Summary and Outlook

- Physics Studies of a 1 GeV, 30 mA Proton Linac for IADS have been done (NC upto 100 MeV).
- Proposed to study 3-100/200 MeV using SC spoke resonators (collaboration with Fermilab under IIFC)
- R&D on RF systems, LLRF, RF Coulers, BPM, control systems, beam diagnostics, SRF cavity & cryomodule, test stands etc initiated.
- R&D part is funded.

Acknowledgement

SVLS Rao, Rajni Pande, Shweta Roy, Piyush Jain, Rajesh Kumar, Sumit Garg, P.K. Nema, S. Krishnagopal, S. Kailas and R K Sinha

Several Divisions of BARC and other institutes are participating in the project and it is our pleasure to thank them all.

