

Spiral 1 & 2 at GANIL (France)

Yolanda GOMEZ MARTINEZ LPSC, UJF / CNRS-IN2P3 / INPG, Grenoble, France.

Outline

- Spiral 2 couplers layout & parameters
- Tests
 - Mechanical test
 - Radiofrequency (RF) tests
- Coupler processing
- Coupler status
- Summary

RF Spiral 2 couplers

Couplers / LPSC

Parameters	Values
Number	26 (12 + 7*2)
Frequency	88.05 MHz
Nominal power*	10 kW CW
Power during test	Up to 40 kW CW
S ₁₁	< -25 dB
Thermal load at 4.2 K	< 1 watt
Accepted reflected power	100%
Q _{ext} at nominal current*	1.3 10 ⁶ - 2.4 10 ⁵
*Spiral 2 nominal accelerating gradient	6.5 MV/m
*Spiral 2 nominal current.	5 mA deuterons

SRF 2011. Michigan. Juillet 29th, 2011

2

Y. Gómez Martínez. LPSC , France.

Outline

- Spiral 2 couplers layout & parameters
- Tests
 - Mechanical test
 - RF tests
- Coupler processing
- Coupler status

Coupler thermal test

- To minimize the heat flux to the cavities:
 - Only a 70 K screen is used
 - The position of the 70 K screen has been optimised
 - 20µm ± 10 % copper plating RRR ~ 10
- To keep the window temperature ~288 K (15 ° C) with and without RF, and to avoid water condensation, a hot, dry, cleaned air system is implemented (otherwise T_{measured} < - 5 °C without RF and ~ 30 C with RF).

	With NO RF	with 20 kW CW
Heat flux to the cavity _{TH}	< 0.6 W	~ 1 W
Power dissipated by the coupler _{TH}	~ 0 W	< 17 W
Temperature antenna extremity TH	295 K	348 K
Power radiated to the $cavity_{TH}$	~ 0 W	~ 0 W

Coupler mechanical test

Elastic limit of annealed Cu OFE = 70 MPa Maximum acceleration measured till now : **6 g**

Outline

- Spiral 2 couplers layout & parameters
- Tests
 - Mechanical test
 - RF tests
- Coupler processing
- Coupler status

RF power test. Power / Multipactor

Y. Gómez Martínez. LPSC, France.

1nm TiN coated window

Temperature and power of an uncoated and a 1 nm TiN coated window

Temperature safety threshold: 40° C.

A temperature increase produced by the coating has been observed

RF power test . TiN coating

This very high constraint led to window's break

Y. Gómez Martínez. LPSC , France.

RF power test

Problem during production						
Coating	Uncoated	TiN sputtering before brazing				
Coating thickness	0	1±0.2nm	10± 2nm	30 ± 5nm		
Nb couplers tested	20	1	0	2		
Resistivity _{25°C th} (Ω cm)	$AI_2O_3 > 10^{12}$	TiN ~ 25*10 ⁻⁶ ; TiO ₂ ~ 10 ¹² [RBS: Ti (%): 40; N (%): 42; O (%) : 18] (IPN Lyon. Ch. Peaucelle)				
S ₁₁ (dB)	~ -41.2	-40.4		-25.4	-28	
P _{max tested} (kW)	40	40		7 kW CW	4 kW CW	
Outside windows temperature_/ P(kW).	30° C ◄	▶ 42 °C		Not measured	130 ° C à 4 kW CW TW	
Multipactor (µA) _{max}	~ 50 µA	~ 140 µA		~ 35 µA	~ 190 µA	

- Almost no multipactor was observed
- Coating window led to temperature increase
- So it was decided not to coat the window

Window broken

RF power test. Coupling

- Electrical coupling
- Same coupler for all the accelerator
- All the cavities β =0.07 have the same coupling and all the cavities β =0.12 have the same coupling. The coupler is on a fixed position

CMs	QEXT Theorical	Q ext measured	Antenna 's penetration (mm)
β =0.07	5.5 10 ⁵	5.3 10 ⁵	10.6 mm
β =0.12	1.1 10 ⁶	10 ⁶	16.6 mm

The choice of the coupling is defined by the optimization of the RF power required, its cost and safety margin. (Calculated by IPN Orsay)

Nominal RF power for β 0.12

Coupleur processing at LPSC

Coupler commisioning at LPSC

Processing at LPSC till 12 kW CW standing wave

Coupler preparation at LPSC Grenoble:

- Ultrasonic bath during 15 min @ 50°C with Ticopur
- Baking during 60 h @ 200°C and 10⁻² mbar
- Oven is vented with flow-controlled (< 1I/min) N₂ filtered alphagaz 2
- Baking in situ during 30 h @ 90 °C and around 10⁻⁸ mbar

Coupler processing at cryomodule β =0.07 / CEA SACLAY

Coupler integration at the low energy- cavity.

- Power coupler conditioned up to 10 kW CW at 300K and 4.2K
- Multipacting barriers (< 200 uA) at very low power (< 200 W)</p>
- The nominal accelerating field (6.5 MV/ m) has been reached

Coupler processing at cryomodule β =0.12 / IPN ORSAY

- Power couplers conditioned up to 10 kW CW at 300K and 4.2K
- Multipacting barriers (< 200 μ A) at very low power (≤ 200W)
- The nominal accelerating field has been reached

Coupler status

- All couplers have been manufactured.
- 17 couplers have been processed.

Summary

The coupler has been optimised:

- A new design of clamps and supports bear 8g accelerations (more than 6g measured during transport)
- A hot, dry , cleaned air system is implemented to avoid condensation for the window
- The coupler's window is not coated.
- The manufacturing is finished
- Power couplers have been conditioned successfully in both cryomodules types
- The remaining couplers processing is under way

From LPSC

- Maud BAYLAC
- Jean-Marie DE CONTO
- Thierry CABANEL
- Julien GIRAUD
- Roger MICOUD
- Myriam MIGLIORE
- Jerome MORFIN
- Francis VEZZU

From CEA Saclay

Pierre BOSLAND

From IPN Orsay

- Guillaume OLRY
- Philippe SZOTT

From GANIL

- Pierre-Emmanuel BERNAUDIN
- Marco DI GIACOMO
- Robin FERDINAND