

Innovative Tuner Designs for Low- β SRF Cavities

Zachary A. Conway Argonne National Laboratory Physics Division-Linac Development Group

Outline

• Why use a tuner?

Cavity mechanical properties

Low-β cavity tuner examples

Tuner Requirements

	Operating Mode	
	CW	Pulsed
Slow Tuning	 Center Cavity Frequency 	 Center Cavity Frequency
Fast Tuning	 Microphonics He Pressure Fluctuations Resonant Vibrations Over Couple – 	 Lorentz Detuning Over Couple – Additional RF Power \$\$\$
	Additional RF Power \$\$\$	

Why use a tuner?

Accelerator cavities must be operated with a stable phase and amplitude

High beam loading – Reduced dependence on RF frequency errors

Mechanical Considerations

- Design to minimize microphonics (can be extremely effective if considered early)
 - Decoupled the RF accelerating mode from common mechanical vibrations
 - cw operation helium pressure fluctuations (M. Kelly, THIOB04, QWR)
 - pulsed operation Lorentz detuning (W. Schappert, FRIOA01)
 - Do as much as you can then use a tuner and overcouple to control RF field

$$\Delta f \propto \iint_{\Delta V} \left[\mu_0 \left| \vec{H}_0(\vec{x}) \right|^2 - \mathcal{E}_0 \left| \vec{E}_0(\vec{x}) \right|^2 \right] d^3 x$$

Slater Perturbation Theorem

- For example
 - cw operation balance contributions to Δf
 - pulsed operation fabricate with a high rigidity

Cavity Mechanical Design

β = 0.5 345 MHz Triple-Spoke Cavity

Z.A. Conway, SRF2005, TUA06 T. Schultheiss & J. Rathke, AES, Modeling ⁷

Types of Tuners In Use/Development Today

- Mechanical
 - Course slow tuners
 - Control The Applied Force
 - Control The Applied Displacement
 - Fine fast tuners
 - Piezo electric
 - Magnetostrictive
- Electromagnetic: Voltage Controlled Reactance (VCX)
 - Limited application range without further R&D
 - Stored Energy < 25 J
 - Frequency < ~100 MHz
 - No plans to use in future accelerators

Helium Gas Actuated Slow Tuner Performance

Zinkann et al, PAC'05, WPAT082

Kelly et al, LINAC2010, THP057

Fast Tuner Performance on HWR

Examples of Low- β Tuners For CW Operation

Tuner Examples

ISAC-II Cryomodule @ TRIUMF

- Lever connected to tuning plate
- Tuner resolution = 0.04Hz/step (5nm/step)
- Laxdal et al, SRF2011 THIOB06

EURISOL R&D

352 MHz β = 0.17 Halfwave

Example of Low- β Tuner For Pulsed Operation

FNAL's Single Spoke Cavity Tuning

325 MHz Single-Spoke

- FNAL developed spoke cavities for a pulsed high-intensity proton accelerator
- The cavities are reinforced, increasing their rigidity and minimizing Lorentz detuning, I. Gonin (FNAL)
- G. Apollinari, SRF'05, TUP34

FNAL's Single Spoke Cavity Tuner

Schappert, Pischalnikov, FRIOA01²⁰

Summary

 When designing your cavity it pays to couple your electromagnetic with your mechanical simulations

> Majority of frequency detuning effects can be minimized or even eliminated by design (neglect can lead to an unusable system)

 Tuner designs should be tailored to applications; many designs work but vary in cost, complexity and flexibility

Thank You

- Scott Gerbick, Mark Kedzie, Mike Kelly, Peter Ostroumov, Sergey Sharamentov Ken Shepard, and Gary Zinkann (ANL)
- Jean Delayen (ODU)
- Alberto Facco (MSU/INFN-LNL)
- Robert Laxdal (TRIUMF)
- Yuriy Pischalnikov and I. Gonin (FNAL)
- John Rathke and Tom Schultheiss (AES)