

Development and Scale-Up of an HF Free Electropolishing Process in Single-Cell Niobium SRF Cavities

M. Inman, H. Garich, S. Snyder, E.J. Taylor, Faraday Technology, Inc., Clayton, OH 45315, U.S.A. L. Cooley, C.A. Cooper, A. Rowe, Fermilab, Batavia, IL 60510, U.S.A.

FERMILAB Project

- Program objective is to progress to industrial scale polishing of single superconducting RF cavities
- Subsequent efforts would transition to industrial scale polishing of full-scale 9-cell superconducting RF cavities
- Project started August 2010; planned end date of March 2012
- Project has requirements that include the following:
 - Total material removal of 150µm; 130µm bulk removal and 20µm +/- 5µm,
 - Maximum material removal ratio from equator to iris of 1.5:1,

Need

- Superconducting radio frequency cavities are fabricated from pure niobium
- Processing of the cavities requires polishing of the interior surface to a mirror finish
- State-of-the-art polishing technology for the Nb cavities uses either buffered chemical polishing or conventional electropolishing
- However, these process employ hydrofluoric acid, which is an "environmental insult" and hazardous to workers
- Ideally, a polishing process for superconducting RF Nb cavities will have attributes that include the following:

- Surface finish of 0.2µm Ra or better,
- Internal surfaces free of frosting, shadows, streaks, erosion, stains, water spots, bubble traces, pits and irregular patterns,
- Internal surfaces with high reflectivity and high gloss, Minimization of hydrogen adsorption during final polish,
- Avoid embedded foreign material in the final polished surface.
- Design and build of polishing capability in progress; anticipate polishing single cavities early 2011

Comparison of chemical polishing, conventional electropolishing and FARADAYIC Electropolishing.

	Chemical Polishing	Conventional Electropolishing	FARADAYIC Electropolishing
Electrolyte	HF/HNO ₃ /H ₃ PO ₄	HF 10% / H ₂ SO ₄ 90%	30% wt H ₂ SO ₄
HF-Based Electrolyte	Yes	Yes	No
Control Mechanism	Viscous boundary Layer	Viscous boundary Layer	Pulsed waveform
Etch Rate	1 µm/min	0.5 µm/min	Up to 5 µm/min
Ra	1 µm	<0.1 µm	0.1 µm

- Electrolyte free of hydrofluoric acid
- \sim Control of surface roughness to a microscale finish, Ra < 0.1 μ m
- Surface free from contamination after polishing
- Current distribution control that enables uniform polishing across the entire cavity surface
- Minimization of the absorption of hydrogen into the bulk material

evelopment of Chemical-Mechanical Polishing perconducting Cavities, S. Mishra, M.J. Oreglia Spiro, ANL-FNAL-UofC Collaboration Meeting

Controlled removal of at least 100 µm of Nb during polishing

Patents Filed

- Filed a utility patent (U.S. and International) on the Eco-Friendly polishing technology:
 - Title: Electrochemical System and Method for Machining Strongly Passivating Metals
 - U.S. Patent Application No. 10240426
 - Foreign (PCT) Application No. PCT/US11/39354

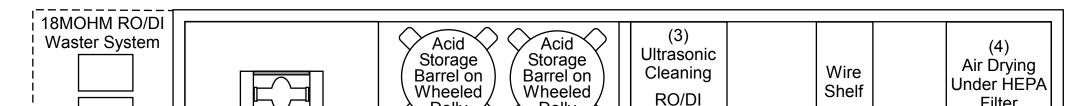
Temperature	15 (chilled)	30-35 (chilled)	RT (chilled)
-------------	--------------	-----------------	--------------

Electrolyte Temperature

- Electrolyte temperature control achieved through insertion of long forward off-times (between anodic and cathodic voltage pulses) Enables chiller to mitigate heat build up from polishing
- Temperature in the bath controlled to as low as 13°C, with chilling of the electrolyte, over several hours – typically on the order of 15-17°C

Surface Finish/Polishing Rates

- Achieved Ra as low as 0.18 μm
 - Measured using a profilometer over a 4 mm distance
- Achieved wide range of polishing rates:
 - Polishing rates of up to 5 μ m/min have been achieved to replace BCP (10 μ m/min)
 - Polishing rates < 0.5 μ m/min have been achieved to replace EP (0.5 μ m/min)


Single-Cell Cavity Electropolishing Tool

Electropolishing Facility - Cleanroom

Cleanroom Layout

人名英卡尔 计过去分词分子计算

(5)

Packaging

SS Table

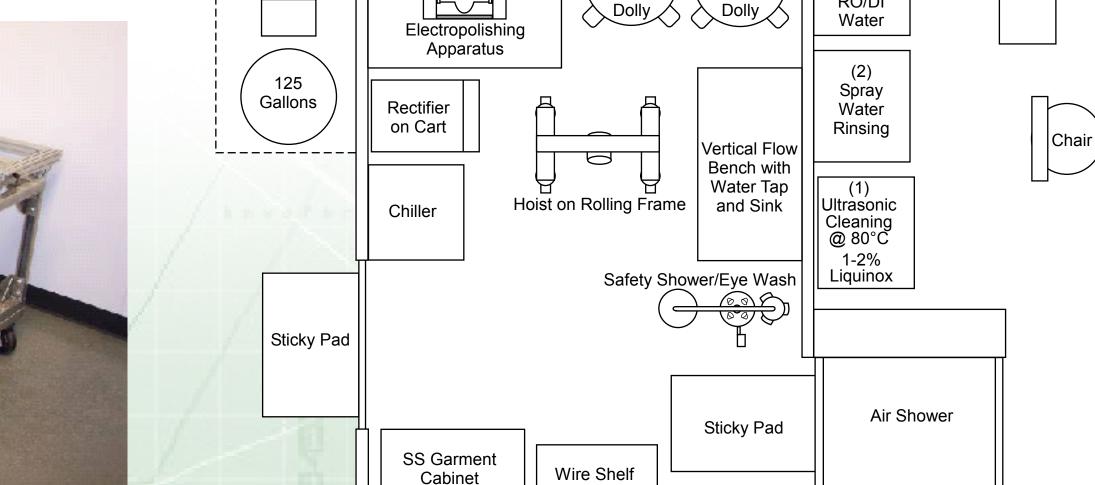
Workbench

PC

Optical Scope

151 172034 77845438 834

TIREFIELDTERT ETHER ERIELDIESEN HITEETIKSTERLIESEN


HE HISTRE TTERIL SELIES ATTINE INTERIES INTERIOR

Single

ちょうしてもます ニュー

Duplicate Fermilab Cavity Electropolishing Tool to Date: full assembly (Left) and view of the Drive Conduction Assembly (Right)

Acknowledgments: Work for this poster has been supported by a DOE ARRA Grant Number 594128