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In an initial phase, at CERN, four β=1 cavities will be 
supplied, and will need to be tested together as they 
would operate in a machine-type cryo-module [5]. 
Figure 1 presents the cavity together with its helium tank, 
the main coupler [6], the HOM coupler, the tuner and the 
cold magnetic shielding, in the configuration that will be 
tested at CERN in the cryo-module.  

CAVITY 
The main design properties of the β=1 cavities are 

summarised in Table 1, for a 50 Hz pulsed operation, 20 
mA current and 0.8 ms beam pulse length. 

Table 1: β=1 cavity, main design properties & operation.  

Property units Value 

Cavity material - bulk niobium 

Gradient MV/m 25 

Quality factor Q0 - 5 ·109 

R/Q - 570 

Operating Temp. K 2 

Cryo duty cycle % 8.22 

Dynamic heat load  W 20.4 

 

RF Design 
The RF design of the β=1 cavity (Figure 2) has been 

done at CEA-Saclay [7]. The cavity is asymmetrical: the 
drift tube at the right of the figure has a diameter of 140 
mm, necessary to receive the fundamental power coupler 
which has a 100 mm diameter. The second drift tube will 
host the tuning system (Saclay 4 type) and 130 mm 
diameter is enough. The diameter is reduced at both sides 
to 80 mm for the connection between two adjacent 
cavities, provided by flanges. 

Figure 2: Geometrical parameters of the cavity. 

Mechanical Design 
The mechanical design of the cavities ensures their safe 

use under maximum loading condition during its entire 
lifecycle.  

Since these cavities are aimed to work in the pulsed 
mode, the sensitivity to the Lorenz force is also especially 
critical. The effects of the detuning due to those forces 
were limited by adding stiffening rings in-between the 
inner cavity half-cells. Figure 3, Figure 4 and Figure 5 
present a qualitative comparison between the mechanical 
deformation of the cavity with and without stiffening 
rings, under the effect of the Lorentz forces induced by 
the electromagnetic field. 

Figure 3: Un-deformed cavity without stiffening rings. 

Figure 4: Cavity without stiffening rings deformed due to 
Lorentz forces. 

Figure 5: Cavity with stiffening rings deformed due to 
Lorentz forces. 

A final thickness of 3 mm was calculated to be 
acceptable in order to cope with all the mechanical 
constraints as well as minimizing the costs of the cavity 
production. 

The manufacturing process induces however a 
difference in thickness at several locations of the cavity. 
As an example, spinning process will result in a 
difference in thickness up to 0.6 mm between the middle 
of a half cell and the iris or the equator, which represents 
in our case 20% of the total thickness. The sensitivity of 
the mechanical behaviour of the cavity to these thickness 
variations can be quite important. 

The mechanical calculations were performed for a 
cavity presenting non uniform thickness, representative of 
the manufacturing tests results. The deformation and 
maximum induced stress were calculated for all load 
cases during the lifecycle of the cavity, in particular the 
maximum service pressure (1.5 bars at room temperature 
and 2 bars at 2 K). The sensitivity to pressure fluctuation 
has also been checked. The induced detuning is one order 
of magnitude lower than the RF frequency bandwidth.  
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sprayed with copper, tests will be performed to assess 
coating and bonding strength and the effect of thermal 
cycling. The preliminary test plan is detailed in Table 3: 

Table 3: Test on cold sprayed samples.  

 W/O 
HT 

W/ HT 
(800°C/2h) 

Status 

Thermal shock  
(10 x in liquid N2) 

no yes Ongoing 

Microstructure 
observation 

yes yes Ongoing 

Thermal conductivity yes yes Ongoing 

Bending test yes yes Ongoing 

Shear test yes yes Ongoing 

Tensile test yes yes Ongoing 

 

Figure 15: Two samples of Cold spray (Nb 1mm  +  
sprayed -Cu 2mm). 

Figure 16: Macrograph of cold-sprayed copper on 
niobium. 

During the next step, a tubular coating tensile test 
(TCT-test) [10] will be performed to provide information 
regarding mechanical coating strength, deposition 
efficiency and coating microstructure. 

 

Figure 17: TCT-test configuration. 

The combination of seamless cavities and Nb - Cu cold 
sprayed material could become an alternative to the actual 

manufacturing techniques. Hydroforming followed by 
cold spray could become a very good solution for SRF 
cavities manufacturing since the welds would be avoided 
as well as the stiffening rings, and the cavities could be 
easily hydroformed because of the small thickness of the 
niobium plate (~ 1 mm Nb + 2 mm sprayed copper). 

HELIUM TANK 

Tank Dimensions for Heat Load Extraction 
The helium tank will contain saturated superfluid 

helium at 2 K cooling the cavity and allowing the 
extraction of the heat dissipated into the bulk niobium 
wall by the RF electromagnetic field, as well as the heat 
injected by all the adjacent components such the main 
power coupler. The geometry of the helium tank has thus 
to allow this heat extraction while optimising the quantity 
of the helium to be used.  

The operating point of the SPL cavities with respect to 
the helium phase diagram is shown in Figure 18.  

Figure 18: Helium phase diagram and SPL operating 
point. 

The cavity is cooled by saturated superfluid helium. 
However, the cavity wall from which the heat has to be 
extracted is at a certain depth below the liquid-vapour 
interface. Thus, without any heat being applied, the state 
of the helium can be described by the red dot in 
Figure 19. The pressure applied at the heat transfer 
surface is therefore p = p0 + gh. If heat is applied to 
induce heat transfer in the system, there will be a local 
temperature excursion T. The “stab margin” in Figure 19 
represents the maximum value of this temperature 
excursion before meeting the liquid-vapour interface at 
which point boiling begins [11]. As an example, in 
saturated He II at 2 K, a channel of L=10 cm height 
results in a hydrostatic over-pressure of Δp = 1.4 mbar, 
creating a temperature margin up to point boiling from 
2 K to ~2.025 K. 

SPL 
operation
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Figure 19: Stabilization margin for saturated He II due to 
hydrostatic pressure. 

Superfluid helium is an excellent thermal conductor. A 
typical value of “thermal conductivity” at 2 K is 
2 kW/mK for a channel of cross section of 1 cm2 and 
length 10 cm, which represents one order of magnitude 
higher than pure copper. However, this relationship is true 
only for small heat fluxes. Above a critical heat flux, the 
temperature increases drastically and eventually the 
superfluidity is lost. The heat flux in He II depends on the 
temperature and on the channel dimension. 

Figure 20: Claudet et al. – Experimental values of heat 
transfer by He II. 

Gorter and Mellinck have shown the dependence of the 
heat flux density with respect to the externally applied 
temperature in superfluid helium. Claudet et al. [12] gave 
experimental values of heat transfer by He II (Figure 20). 

Applying the theory to our geometry, in some positions, 
the maximum heat load extracted by the superfluid 
helium is limited to 0.8 W/cm^2. For the port to be 
connected to the bi-phase tube, this maximum heat load 
extracted is 1.5 W/cm^2. The dynamic heat load to be 
extracted in pulsed operation is 20 W. To this value the 
static heat load from the cryo-module and the main 
coupler have to be added. If the cavity needs to be tested 
in CW mode, then the helium tank port will be of 
minimum 167 cm^2 since ~250 W should be extracted. 

Minimizing the Injected Heat Load 
The heat dissipated by the fundamental power coupler 

at the interface to the helium tank has also been estimated 

and an actively cooled Double walled Tube was optimised 
in order to minimize these losses.  

 

Figure 21: Main coupler actively cooled Double walled 
Tube at the interface to the helium tank. 

The heat injected to the helium tank by the main power 
coupler was estimated to more than 20 W if no active 
cooling of the Double walled Tube. When actively 
cooling the main coupler Double walled Tube using 
helium gas at 4.5 K, the heat loss to helium tank is 
reduced to negligible values (Figure 22). 

Figure 22: Temperature profile in main coupler Double 
walled Tube without and with active cooling. 

Mechanical Considerations 
The helium tank has also a structural role since it 

transmits the effort applied by the tuner to the cavity, its 
rigidity being thus very important in the tuning process. 
The stiffness of the helium tank has a direct impact on the 
Lorentz detuning, defining the boundary conditions of the 
cavity. A longitudinal stiffness higher than 100 kN/mm is 
required.  

Two choices of material have been studied for the 
helium tank: stainless steel and titanium. The titanium has 
the advantage of the same thermal contraction as niobium 
(in the order of 1.5 mm/m from ambient temperature to 
2 K), while the thermal contraction of the stainless steel is 
approximately the double. The use of stainless steel tank 
would induce either the need of a larger tuner range than 
in the case of titanium tank or larger thermal stresses to 
the cavity.  

The advantage of the stainless steel is the 
manufacturability and thus the cost.  

One of the driving elements for the mechanical design 
was the transitions from the helium tank to all the 
adjacent components, in particular the main coupler. This 
analysis is detailed in the chapter below. The baseline for 
the =1 cavities that will be tested in a cryo-module at 
CERN is stainless steel helium tank. 

ρgh

stab margin

T0, P0

T0, P0 + ρgh

He II 
h

300*K

Helium 
gas 
cooling 
the 
Double 
walled 
Tube

2*K
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The joint was achieved by typical fusion welding 
process. The first promising results have however still to 
be complemented with detailed microstructure analysis of 
the joint, phase constitution and mechanical properties at 
room temperature, high temperatures as well as at 
cryogenic temperatures. 

MAGNETIC SHIELDING 
To achieve Q-values above 109 the earth magnetic field 

needs to be reduced on the cavity surface. For the SPL a 
requirement of less than 1 T residual DC magnetic field 
was defined. This corresponds for high RRR niobium at 
704 MHz to a residual resistance of less than 3 nOhm 
[15]. Electromagnetic simulations using CST EM studio 
showed that the earth magnetic field can best be shielded 
by a combination of inner and outer cylinders as 
presented in Figure 30.  

 

Figure 30: Magnetic shielding for a string of 4 cavities. 

If one uses only one shield the shielding factor is 
proportional to the thickness of the material and its 
permeability. For two shields not too close to each other 
the achieved shielding factor is the product of the two 
shielding factors. The inner cylinders should be as close 
as possible to the cavity. One shield per five-cell cavity is 
necessary to avoid demagnetization. These cylinders must 
be equipped with end-caps to meet the requirement of less 
than 1 T residual field over the whole cavity surface. 
The outer cylinder should not be too close to the inner 
cylinders. The solution found is one cylinder per module 
(4 cavities). End-caps are not necessary here. Results on 
test cylinders manufactured for TESLA cavities showed 
that _r values of 54700 (Mu-metal at room temperature) 
and 13300 (Cryoperm at 4K) can be achieved [16]. From 
these values it was found that the requirement of less than 
1 T residual field can be met by 2 mm thick inner 
cylinders made of Cryoperm and 1 mm thick outer 
cylinders made of Mu-metal [17]. 

SUMMARY AND OUTLOOK 
A string of four SPL superconducting =1 RF cavities 

will be installed by 2013 in a so-called Short cryo-module 
and will be tested at CERN in a machine-type 
configuration, powered by high-power RF. 

Extensive studies have already been done with respect 
to the mechanical aspects of the cavities and helium tank, 
and the construction of these four cavities is foreseen by 
the end of 2012.  

In the frame of the SPL R&D study, innovative 
mechanical solutions have already been explored and a 
number of R&D studies are still ongoing with several 
promising results already obtained.  
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