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Abstract 
There is increasing interest in using superconducting 

cavities as rf separators (e.g. Jefferson Lab 12 GeV 
upgrade and Fermilab Project X) or as crabbing systems 
to increase the luminosity in colliders (e.g. LHC upgrade 
and electron-ion colliders). Several of these applications 
have severe dimensional constraints that would prevent 
the use of cavities operating in the TM110 mode. A number 
of compact designs for deflecting/crabbing cavities have 
been designed and are under development; their 
properties are presented. 

INTRODUCTION 
While most superconducting cavities for use in 

accelerators are for accelerating particles, they can also be 
used for deflecting beams or crabbing bunches.  
Accelerating cavities provide a longitudinal voltage in 
order to increase the forward momentum of the particles 
while deflecting/crabbing cavities apply a transverse 
voltage.  Deflecting and crabbing cavities are identical, 
the only difference being in the phase between the rf 
transverse fields and the bunches.  Deflecting cavities 
operate at maximum –or close to maximum– phase so the 
whole bunch acquires a transverse momentum.  Crabbing 
cavities operate at zero phase so there is no net deflection 
of the center of the bunch but the front and back of the 
bunch are deflected in opposite direction. 

Deflecting systems were one of the first applications of 
superconducting rf to particle accelerators.  In the early 
1970’s an rf separator, shown in Fig.1, was designed and 
fabricated at KfK Karlsruhe [1].  It was comprised of 104 
cells and the frequency of the deflecting mode was 2.865 
GHz.  The separator was operated at CERN between 1977 
and 1981 and is now being resurrected at IHEP. 

The first superconducting crabbing system was 
developed, implemented, and operated at KEK [2].  The 
crabbing system consisted of two cavities, shown in Fig. 
2, one for each of the two rings.  The cavities operated at 
508 MHz in the TM110 mode.  In order to remove the 
degeneracy between the two polarizations of the TM110 
mode, the cavity was designed with a race-track shape 
cross-section.  The cavities were installed in the rings in 
2007 and were operated until recently.  Although there 
were some difficulties associated with amplitude 

instabilities and mechanical tuner resolution, luminosity 
increase using a crabbing scheme was clearly 
demonstrated. 

 
Figure 1: Karlsruhe/CERN superconducting rf separator. 

 

 

 

Figure 2: 508 MHz crab cavity used at KEKB 

Those cavities operate in the TM110 mode, where the 
deflection results from the interaction with the transverse 
magnetic field.  Because of the mode used these cavities 
are larger (by about 30%) than accelerating cavities of the 
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The lower-order and higher-order modes have been 
identified and are shown in Fig. 7.  The 4-rod geometry is 
characterized by a high shunt impedance. 

 
 

 
 

Figure 7: Lower-order and higher-order modes of a 
superconducting 4-rod cavity. 

 
SLAC has been proposing a “half-wave” geometry 

[9-11] shown in Fig. 8.  While it may look like a half-
wave resonator, the operating mode is actually a TE11-
like mode where the deflection is produced by the 
magnetic field  

    
Figure 8: “Half-wave” resonator operating in a TE11-like 
mode. 

 
This geometry is very compact in one dimension and an 

extensive analysis has been done of its lower-order and 
higher-order modes properties (see Fig. 9) and its 
multipacting behaviour.  This geometry is not pursed 
anymore for the LHC luminosity upgrade since the new 
requirements are that the same geometry should be able to 
be used in the horizontal and vertical configuration and 
still meet the dimensional requirements shown in Fig. 3. 

 
Another compact geometry is the “parallel-bar” whose 

concept is shown in Fig. 10 [12-17].  It consists of two 
half-wave resonant lines operating in opposite phase 
(π-mode).  A transverse deflecting electric field is 

generated in the mid-plane between the two bars which 
produces a deflecting voltage to a particle travelling along 
the beamline between the bars. 

 

 
 

Figure 9: Lower-order and higher-order mode properties 
of the SLAC “half-wave” cavity. 

 
 

 
Figure 10: Concept for the parallel-bar 
deflecting/crabbing cavity. 

 
This concept can be improved and optimized in several 

ways.  First, in order to take full advantage of the voltage 
generated at the center of the bars, their cross-section can 
be extended so the deflecting voltage is a maximum.  This 
happens when the width of the bars along the beamline is 
roughly / 2l  as shown in Fig. 11 top left.  The mode 
where the two bars oscillate in phase (0-mode) is, to first-
order, degenerate with the deflecting mode.  The 
degeneracy can been removed and the frequency of the 
accelerating mode can be almost doubled by changing the 
cross section from a rectangular to a cylindrical shape as 
shown in Fig. 11 top right.  In cavities operating in a 
TEM mode, irrespective of the cross-sections of the inner 
and outer conductors and as long as the geometry has 
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translational invariance (as in Fig. 11 top right), the ratio 
of peak surface magnetic field to peak surface electric 
field is a constant 3.33 mT/(M/m). While this may have 
been a good ratio in the past, advance in cavity cleaning 
procedures allows operation at higher surface electric 
fields and a ratio of ~1.8 mT/(MV/m) is more appropriate.  
This can be accomplished by bending the bars as shown 
in Fig. 11 bottom left.  This increases the volume 
available to the magnetic field thus lowering it at the 
expense of an increased surface electric field.  The 
resulting geometry (Fig.11 lower left) has a widely 
separated fundamental mode and well-balanced peak 
surface electric and magnetic fields.  However, the fields 
in the region between the bars and outer walls are very 
small; this could lead to multipacting, and that region can 
be eliminated without impact on the fundamental mode.  
Thus the outer side of the bars can be extended to the 
wall, resulting in the geometry of Fig. 11 bottom left. 

 

 
Figure 11: Evolution of the design of parallel-bar cavities. 

 
A number of deflecting and crabbing cavities for 

several applications based on this geometry have been 
designed and are shown in Fig. 12. 

 
Figure 12: Parallel-bar cavities for several deflecting and 
crabbing applications.

The higher-order modes of the 499 MHz cavity are 
shown in Fig. 13.  As can be seen this cavity has no 
lower-order mode and the nearest higher-order mode is 
~750 MHz or 1.5 the frequency of the fundamental 
deflecting mode.  Furthermore the higher-order mode 
spectrum is quite sparse.  This is representative of all the 
designs based on this geometry. 

 
Figure 13: Higher-order modes of a 499 MHz parallel-bar 
cavity.

 
Recently SLAC has proposed the geometry shown in 

Fig. 14 [11] for a 400 MHz crabbing cavity for the LHC 
upgrade.  It is conceptually identical to the cavity shown 
in Fig. 12 and has similar properties.  The only difference 
being that the outer shell is rectangular instead if 
cylindrical. 

 

 
Figure 14: 400 MHz ridged-waveguide cavity [11]. 

 
Fermilab has proposed the cavity shown in Fig. 15 for 

the Project X deflector.  It is a 3-cell version of the cavity 
shown in Fig.12. 

 
 

 
Figure 15: 3-cell version of the cavity in Fig. 12. 

 
Brookhaven has proposed a geometry based on a 

quarter-wavelength resonant line [18-20]. A preliminary 
implementation for the 400 MHz LHC crabbing system is 
shown in Fig. 16.  This geometry could also be 
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