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including the effects of HOM frequencies spread and the 
mode splitting.   

BBU INSTABILITY IN ELLIPTICALLY 
DEFORMED CELL CAVITIES 

The HOM simulation results in randomly elliptically 
deformed ERL cavities are used as input to the beam 
tracking code BMAD for studying the Beam Break-Up 
(BBU) threshold current [6]. This limiting current is due 
to transverse beam instability caused by the cavity HOMs 
in ERL operation, and can be amplified by coherent 
effects between the cavities having nearly identical HOM 
frequencies.  

The higher-order dipole modes computed via Omega3P 
were ranked with a figure of merit ξ, mentioned earlier. 
This figure of merit is computed for each mode, given the 
R/Q, loaded quality factor and frequency, and the 
threshold current is inversely related to the maximal value 
of ξ over all HOMs. 

 

Figure 6: Beam break-up results for the 0.5 mm elliptical 
variations. Mean BBU current is 0.39 A, and 90% of 
ERLs had current in excess of 0.34 A. 

 
Figure 7: Beam break-up results for the 1.0 mm elliptical 
variations. Mean BBU current is 0.41 A, and 90% of 
ERLs had current in excess of 0.36 A.  

The ten modes from each cavity with the largest values 
of ξ were used as accelerating cavity HOM elements in 
Cornell ERL lattice file version 8.4. The cavities were 
then assigned to random locations in the ERL, and 100 
such ERLs were simulated. A particle tracking program 
BMAD was used to compute the threshold current 
through the cavity before beam break-up occurs. 
Histograms comparing the 0.5mm variation with the 1.0 
mm variation are presented in Figs. 6 and 7. The 
increased threshold current in the larger elliptically 
deformed cell cavities is likely due to the larger relative 
cavity-to-cavity frequency spread of shapes with larger 
errors. 

Since there were not enough cavities to entirely 
populate the ERL with unique cavities, an artificial 
relative cavity-to-cavity frequency spread of 0.001 was 
introduced in the particle tracking program. This has the 
effect of simulating actual operating conditions in which 
no two cavities have the exact same HOM properties. 

The results show that the X-Y coupling of the dipole 
modes is not the limiting factor for the threshold current, 
and is consistent with other simulations, that did not 
include elliptical defects [7].  
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