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possible impact on the costs needs to be quantified.  
Several key points have emerged to manage cost-effective 
manufacture: 
 

• The risk to the manufacturers must be reduced to an 
acceptable minimum. It is realized by carefully 
specifying the production process, so-called “build-
to-print”, and requiring sufficient documentation and 
sign-off on each step of the process, 

• The ILC partner laboratories must assume 
responsibility for managing the risk associated with 
achieving expected performance. Testing of the 
cavities and cryomodules must be responsible with 
laboratories those who need to host the necessary 
test infrastructure. 

 
Figure 10 shows the concept of a possible globally 

coordinated cavity and cryomodule production, based on 
a concept with ‘regional hub-laboratory’ contribution [40]. 

 

Figure 10: A possible model for ILC cavity/cryomodule 
production in cooperation of laboratories and industry.   

 
As its name suggests, the hub-laboratory is a central 

coordinating laboratory for regional cryomodule 
production.  A consortium of hub-laboratories forms close 
cooperation to the ILC host-laboratory via the adopted 
governance mechanism. The hub laboratory’s key 
responsibilities are to: 
 
 responsible to the performance of the cryomodules to 

be delivered to the ILC host-laboratory, 
 provide the cold testing infrastructure (for both 

cavities and cryomodules assembly); 
 manage and supervise the industrial contracts, and  
 provide quality control and assurance. 
 

It is quite likely that the hub-laboratory will procure 
and qualify the niobium material, and will host the cavity-
string and cryomodule assembly facility to be run under 
contract with industry. 
 

SUMMARY  
   The International Linear Collider (ILC) is planned as 

a next energy-frontier electron-positron collider. The SRF 
cavity development for the ILC has progressed in the 
Technical Design phase since 2007. The cavity field 
gradient has achieved the interim milestone of the 50 % 
production yield at 35 MV/m with Q0 ≥ 8 x 109.   The 
field gradient improvement has been realized with various 
R&D efforts and better understanding.  The best field 
gradient of ≥ 45 MV/m has been realized with a large-
grain, Tesla-style cavity with the final surface chemical 
process using electro-polishing. 

   The cavity-string performance in the cryomodule has 
been demonstrated in three major facilities: FLASH at 
DESY, NML at Fermilab, and STF at KEK. The first 
prototype cryomodule for the EXFEL installed into 
FLASH has demonstrated an average field gradient of 32 
MV/m, and the S1-Global cryomodule test at STF has 
demonstrated a cryomodule assembled and tested with an 
international collaboration. The CM1 test at NLM is in 
progress. The cromodule-string test with beam 
acceleration has progressed at DESY with also 
international cooperation, and the ILC accelerator 
operational condition of 9mA and long bunch-train have 
been successfully demonstrated.  

   The preparation for the SRF cavity industrialization is 
in progress with multiple communications with industry 
and laboratories. An industrialization model based on a 
consortium of regional hub-laboratories to support the 
ILC host laboratory is under discussion.  

   The Technical Design phase is to be completed by the 
end of 2012 with publishing the ILC Technical Design 
Report.  
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